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Abstract. During the last few decades, it has become increasingly popular the study of events that
occur on a network of lines. Examples include, for instance, wildlife-vehicle collisions, street crimes,
traffic accidents and plant and tree spatial distribution. For all these cases, as points depend on
the linear network, the analysis of such spatial configurations is focused on the description of the
spatial configuration of points assuming that the whole point pattern is placed over the linear network.
However, in some cases, the dependence between a point pattern and a linear network is not always
evident. In these cases, as points do not occur on the linear network, the spatial dependence between
point and line segments is not visually obvious (for instance, human-caused fires and road networks).
In this work we proposed the definition of a new second order characteristic, based on the Ripley’s K
function, to analyse the spatial structure between point patterns and linear networks.

Keywords. Linear network; Point process; Road network; Spatial point patterns.

1 Introduction

The study of events that occur on a network of lines, such as a road network, has become increasingly
popular during the last few decades. Examples include, for instance, wildlife-vehicle collisions [3, 6] and
street crimes [1, 5]. In all these examples, point patterns occur on line segments and it is not expected
that an event occurs out of these linear networks. As such, the resulting point pattern always depends on
the spatial configuration of such linear structures. In these cases, as points depend on the linear network,
the analysis of such spatial configurations is focused on the description of the spatial configuration of
points assuming that the whole point pattern is placed over the linear network; see for instance [8, 9, 1].

However, in some cases, the dependence between a point pattern and a linear network is not evident.
Although the point pattern can depend on such linear structures, points are not constrained to lie along
the linear network, but within a certain distance or buffer. In this case, as points do not occur directly
over the linear network, the spatial dependence between points and line segments may not be visually
apparent. For instance, Human-Caused Fires result in point patterns which spatial structure can depend
on the underlying road network [7, 10], but some are placed right on the roadside, and other somewhat
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further away, but still benefiting from access provided by the road network.

Nevertheless, few approaches (if any) have been developed to establish a formal approach to describe
correlation between point patterns and linear networks. In fact, most of the studies of point patterns and
linear networks presuppose that points are constrained to lie along the line segments, thus points locations
are determined by line segments. Therefore, our main aim in this work is to propose a new second order
measure to analyse the spatial structure between point patterns and linear networks.

2 Linear networks and point processes

Following Ang et al. [1], we define a line segment in the plane with endpoints u and v as [u,v] =
{tu+ (1− t)v : 0 ≤ t ≤ 1}. A linear network L is the union L =

⋃nl
i=1 li of a finite collection of line

segments l1, . . . , lnl in the plane, with a total length |L|. We generalize the definition of L and we also
assume that L represents a stochastic mechanism on a region A ⊂ R2 that can generate also such linear
networks. Moreover, we consider that this stochastic mechanism L is stationary and isotropic, in the
sense that the resulting statistical properties of L are the same in different, but geometrically similar,
subregions of A; isotropy means that there are no directional effects. Moreover, we consider a spatial
stationary point process as a stochastic mechanism Φ that generates a countable set of events xi in a
bounded region A, with point intensity λ (see, for instance, [4]). We do not presuppose Φ to be initially
related to L. Our intention is to obtain a second-order measure to detect spatial structures between point
patterns and linear Networks. With this in mind, we propose an extension of the Ripley’s K-function
to detect such structures. Let define a second-order characteristic, based on the Ripley’s K-function, to
analyse the spatial structure between Φ and a linear network L via

KLX(r) =
1

λL
E
[∫

L
I(0 < ‖x− y‖ ≤ r)dy|x ∈Φ

]
(1)

where ‖x− y‖, the Euclidean norm, computes the Euclidean distance between a point x ∈Φ and a point
y located in L, λL = |L|/|A| is the intensity of L and I(x) is the indicator function, where I(x) = 1 if x
is true and I(x) = 0 otherwise. Then λLKLX(s) is the expected length of L falling in a disk b(x,r) with
radius r and centrered at x ∈ Φ. It is straightforward to deduce that the expected length of L falling in a
disk with radius r located at any random location of A is λL×|b(x,r)|. Dividing by λL shows that in the
case that a point process Φ and a linear network L are independent, KLX(r) = πr2.

We propose a non-parametric estimator of this function based on moment estimators and approxi-
mating the integral term by a Riemann sum, and thus

K̂LX(r) =
|A|
|L|

1
n

n

∑
i=1

nL

∑
j=1

ω−1
i j I(0 < ‖xi−y j‖ ≤ r)

|L|
nL

=
|A|
nnL

n

∑
i=1

nL

∑
j=1

ω−1
i j I(0 < ‖xi−y j‖ ≤ r)

(2)

where nL is the number of partitions of L for the Riemann sum, ‖xi− y j‖ is the Euclidean distance
between points of the point pattern φ and middle points of the resulting line segments of the nL partitions,
n is the number of points of the point pattern φ, and ωi j is the Ripley’s factor [11] to correct for edge
effects. Note that this factors is obtained as assuming that the resulting middle points for the nL segments
are in fact a new point pattern. Also notice that nL should be large to obtain a good approximation of the
integral term in (1).

METMA IX Workshop 2
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3 Simulation study

We conducted a simulation study to illustrate the use of the new second-order measure to detect correla-
tion structures between point patterns and linear networks under several point configurations and a linear
network defined by a road configuration. This linear network is a real road network from a square region
(30 km × 30 km) in Asturias (North of Spain). We considered several point process mechanisms to
generate distinct point configurations in the unit square, assuming this road network. To generate cluster
structures between a point pattern and a linear network (i.e. attraction between points and line segments),
we considered the Spatstat R package [2] to generate realisations of Poisson point processes with a spec-
ified point intensity on a linear network. The resulting point pattern depends on the linear network as
all the points are placed on the linear structure. To reduce the degree of dependence between points and
line segments, we assumed random shifts of the resulting Poisson point pattern on the linear network.
In fact, for xi = (xi,yi), for i = 1, . . . ,n, we took xi → xi + aU(−1,1), and yi → yi + aU(−1,1), where
a≥ 0 is a constant that defines the strength of attraction between points and line segments; for a = 0 the
point pattern is not shifted and we obtain the original Poisson pattern on the linear network. Moreover,
we also considered realizations of repulsion structures between points and line segments. This point pro-
cess is essentially defined as a stationary and isotropic Poisson point process over A, where we impose
a minimum repulsion distance between points and the linear network. Here immigrants arrive randomly
in time according to a Poisson process with rate α and have uniformly distributed locations on A. If the
minimum distance between the newly arrived point and L is less than a prescribed repulsion distance dr

then newly arrived points are accepted with probability p. Otherwise, if this minimum distance is larger
than or equal to dr, newly arrived points are always accepted. To obtain (2), we consider nL = 299757
partitions to obtain a reasonable approximation for the integral term.

Figure 1 shows the resulting point patterns for the attraction and repulsion scenarios, for a = 500
meters (middle attraction effects), and dr = 200 meters and p = 0.5 (middle repulsion effects), respec-
tively, for a point intensity of around 1000 points. This highlights that for the attraction example, points
are clumped together in spatial regions where the density of roads are higher, and under the repulsion
scenario points form clusters avoiding line segments. Inspection of the resulting empirical K̂LX(r)−πr2

function confirms this results. In both cases, this empirical function lies outside the upper and lower
envelopes based on 1000 realizations defined as random shifts of the analysed point pattern (random
superposition of points and line segments).

4 Future work

The next steps in our work are to extent the simulation study assuming further scenarios (attraction and
repulsion) and consider a real data set involving human-caused fires and road networks.

Acknowledgments. Work funded by grant MTM2017-86767-R from the Spanish Ministry of Economy,
Industry and Competitiveness
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Figure 1: Attraction and inhibitory point patterns between points and a road network (left and right
columns, respectively) for a = 500 meters (attraction), and dr = 200 and p = 0.5 (repulsion), together
with resulting empirical functions K̂LX(r)−πr2 corresponding to the attraction and repulsion point pat-
terns (solid line) together with the maximum and the minimum envelopes (grey line) based on 1000
realizations defined as random shifts of the analysed point pattern.
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Spatio-temporal point processes: a second-order marked framework
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Abstract. Spatio-temporal point processes can be analysed statistically by considering the times as
marks of the locations or the locations as marks of the times. For these marked point processes, clas-
sical second-order characteristics yield interesting information about spatio-temporal correlations.
These summary functions provide valuable information about the relations between the points over
distances in space and time and on the strength and range of interaction in spatio-temporal patterns.
We give statistical estimators of these summary characteristics and investigate their properties by sim-
ulation.

Keywords. Mark summary statistics; Marking; Second-order characteristics; Spatio-temporal point
patterns.

1 General set-up

Paper [3], which in the following is denoted as Part 1, suggested the idea of transforming a spatio-
temporal point process into marked point processes, and of analysing them by means of known second-
order summary functions of marked point processes. We can consider the times as marks of the spatial
point process of point locations, which yields a spatial point process with real-valued marks, or we
can consider the locations as marks of the times, which yields a one-dimensional point process on the
time axis with vector-valued marks. While marks for usual point processes are often considered only
an additional issue, for spatio-temporal processes they are an inherent, quite natural and a-priori given
issue.

The definitions and notation introduced in Part 1 are used also here. We consider a spatio-temporal
point process N in Rd×R as a random sequence of points

N = {[x1, t1], [x2, t2], . . .},

where the xn are spatial locations and tn the corresponding times. We assume that the point process N
is orderly, roughly meaning that coincident points do not occur. In the theoretical part of the paper we
assume that the basic point process N is completely stationary and in the context of summary character-
istics we additionally assume complete isotropy, which means that all rotations of N around the origin of
Rd×R have the same distribution as the original spatio-temporal point process N. A completely station-
ary spatio-temporal point process has a constant intensity λ, defined as λ = E(N( 1 × 1 )), i. e., λ is the
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mean number of points per unit volume and unit time. The first 1 denotes the unit cube and the second
the unit interval.
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Figure 1: Realisation of a spatio-temporal double-cluster point process in 1 × 1 with parameters λp =
20, R = 0.07 and µ = 100. We additionally represent the corresponding time and location marks, where
the location mark is given by the norm.

A simulated realisation of a double-cluster point process on the spatio-temporal window W ×T =
1 × 1 is shown in Figure 1, together with the corresponding time and location marks, where the spatial

mark is given by the norm of the location vector. Again, in the time mark plot the diameters of the circles
are proportional to the temporal unit, with sizes of the points indicating older points.

2 Mark summary functions for spatio-temporal point processes

2.1 Time marks (MT )

For the real-valued time marks of MT the theory in [1] can be applied without changes. We have only to
note that the mean mark msp is τ/2. A test function is a measurable function f : R2→ [0,∞) that assigns
a non-negative number to two marks. The corresponding (non-normalised) mark correlation function
c f ,sp(r) can be written as

c f ,sp(r) = E
[

f (t(x1), t(x2)) |x1,x2 ∈ Nspace,‖x1− x2‖= r
]
, r > 0. (1)

Here Nspace is the spatial component of the spatio-temporal point process, and t(x1) and t(x2) are the
time marks of the points x1 and x2. The function c f ,sp(r) can be expressed (and estimated) by means of
the product densities ρsp(r) and ρ f ,sp(r), where ρsp(r) is the second-order product density of Nspace and
ρ f ,sp(r) the density with respect to the 2d-dimensional Lebesgue measure of the second-order factorial
measure α f ,sp. We then have

c f ,sp(r) =
ρ f ,sp(r)
ρsp(r)

, r > 0.

The mark variogram γsp(r) [1], which is a non-normalised characteristic, is obtained by

γsp(r) = cv,sp(r)− cc,sp(r), r > 0.

METMA IX Workshop 2
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For more details see [2]. The most frequently used normalised correlation functions are the mark corre-
lation function kmm,sp,

kmm,sp(r) = cc,sp(r)/m2
sp = cc,sp(r)/(τ/2)2, r > 0.

2.2 Location marks (MW )

A test function is now a measurable function f : R2d → [0,∞) that assigns a non-negative number to two
location marks. The corresponding (non-normalised) mark correlation function c f ,te(t) can be written as

c f ,te(t) = E [ f (x(t1),x(t2)) | t1, t2 ∈ Ntime, |t2− t1|= t] , t > 0. (2)

Here Ntime is the temporal component of the spatio-temporal point process, and x(t1) and x(t2) are the
location marks of the time points t1 and t2. Temporal counterparts of the mark summary functions can be
defined using the test functions in the same fashion as in previous case, i. e., we consider in what follows
a corresponding

• norm-mark variogram γ[n]te = cv,te− cc,te,

• the norm-mark correlation function k[n]mm,te = cc,te/m2
te.

3 Non-parametric estimators for the mark summary functions

We recommend the statistical estimators of Part 1 also here and thus we have the following estimators.
The estimator of c f ,sp(r) is given by

ĉ f ,sp(r) =
∑6=

x1,x2∈Nspace∩W
f (t1, t2)κε(‖x1− x2‖− r)

∑6=
x1,x2∈Nspace∩W

κε(‖x1− x2‖− r)
, r > ε > 0,

and that of c f ,te(t) by

ĉ f ,te(t) =
∑6=

t1,t2∈Ntime∩T
f (x1,x2)κδ(|t2− t1|− t)

∑6=
t1,t2∈Ntime∩T

κδ(|t2− t1|− t)
, t > δ > 0,

where κε and κδ are one-dimensional kernel functions with spatial bandwidth ε and temporal bandwidth
δ, respectively.

4 Simulation study

Figure 2 shows the estimated and theoretical spatial mark variogram γsp(r) for the double-cluster model
indicating spatio-temporal interaction up to distances from 0.13 and 0.15 which are close to the spheres

METMA IX Workshop 3
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Figure 2: Estimated and theoretical mark variograms γsp(r) for a double-cluster model together with the
constant value for the Poisson case. The bandwidths are (µ = 40: ε = 0.003) and (µ = 100: ε = 0.024).
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Figure 3: Estimated and theoretical mark correlation kmm,sp(r) (left) and estimated kmm,te(t) (right) for a
double-cluster model together with the constant value for the Poisson case.

diameter. Further, these values are also close to the range 2R = 0.14 with sill 1/12 = 0.083 for the
theoretical spatial mark variogram. The nugget effect 0.019 suggests a high variability of locations for
small distances.

Figure 3a shows the theoretical and estimated kmm,sp(r) together with the constant value for the
Poisson case. In both cases, the theoretical and estimated spatial mark correlation functions are close
together and follow the same behaviour over the range of distances. This means that the conditional
mean of the product of marks given that there is a pair of points in the unmarked pattern with inter-event
distances approximately equal to r or t, are relatively more frequent compared to the case of a Poisson
process.
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Abstract. The first-order intensity function is one of the functions characterising a point process, and
its study has been approached so far from different perspectives. One appealing model describes the
intensity as a function of a spatial covariate, and in the recent literature estimation theory and several
applications have been developed under this model. In this work we first formulate a goodness-of-
fit test for this intensity model, assuming a nonhomogeneous Poisson point processes, and secondly
we formulate a two sample testing problem. Both tests are based on an L2-distance, their normal
asymptotic distributions are proved and appropriate bootstrap procedures are implemented to calibrate
them. The performance of the proposed techniques is analysed in extensive simulation studies and is
illustrated with two real data sets: Murchison gold deposits in Western Australia and wildfire data in
Canada.

Keywords. Point processes; First-order intensity; Testing; Covariates; Wildfires.

1 Introduction

Analysing the dependence of a point process on spatial covariates has generated an increasing interest in
the last decades. The possible applications in fields such as ecology, forestry, seismology and epidemio-
logy among others have been on the basis of this raise of attention to the problem.

First-order intensity function is one of the characteristic functions of a point process and its study is
one of the main aims in this field. Assuming a parametric model may be a way of estimating it, using for
instance a likelihood score such as the Akaike information criteria (AIC), see [6] or pseudolikelihood pro-
cedures, see for example [11]. In the Bayesian context [10] proposed some models based on log-gaussian
Cox processes. However, it is well-known that these techniques can provide unreliable estimations when
the assumed model does not fit the real intensity. Hence, an alternative through nonparametric methods
such as kernel estimation may apply.

The first kernel intensity estimator was proposed in [5], which has been mostly used in exploratory
analysis due to its lack of consistency. In the last decades, this lack of consistency as well as some real
applications requirements, induced a new scenario based on the inclusion of covariates in the model. [9]
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proposed a kernel intensity estimator, assuming that the intensity function depends on some observed
spatially varying covariates through an unknown continuous function. Later, [1] postulate

λ(x) = ρ(Z(x)), x ∈W ⊂ R2, (1)

where Z : W ⊂R2→R is a spatial continuous covariate that is exactly known in every point of the region
of interest W . In practice this covariate will commonly be know in an enough amount of points spread
over the region, so the values for the rest of the points can be interpolated and it can be assumed that
these values are indeed the real ones.

The inclusion of spatially varying covariates has been a big step forward on point process theory;
however, a little attention has been paid to test the dependence on these covariates. To the extent of our
knowledge, only something similar has been done in a slightly different context in [4], where the authors
assume that the spatio-temporal intensity depends on a linear combination of several covariates and they
test, using the conditional intensity, whether any of the coefficients are null.

In this work we try to fulfil the existing gap on checking the goodness-of-fit of model (1) by defining
a suitable testing procedure. Moreover, once assumed the hypothesis of the covariate dependence as it
is indicated in (1), we formulate a two sample problem where we test if the first-order intensities of two
spatial point patterns are equal through their densities of event locations.

2 Goodness-of-fit test

Let X be a point process defined in a region W ⊂ R2, where W is assumed to have finite positive area;
X1, . . . ,XN a realisation of the process, where N is the random variable counting the number of events,
and Z : W ⊂ R2→ R the spatial continuous covariate.

We formulate the null hypothesis H0 : λ(x) = ρ(Z(x)), x∈W versus a general alternative in which the
intensity function is not explained completely through the covariate. The idea is to define a test statistic
based on a L2-distance between the classical kernel intensity estimator defined by [5] and the intensity
estimator under model (1) proposed by [2]. Due to the lack of consistency of Diggle’s proposal we have
decide to do a equivalent comparison using the concept of “density of events location” of [3] instead of
using the intensities; i.e., the null hypothesis can be equivalently rewritten as H0 : λ0(x) = ρ(Z(x))/m,
with λ0(x) = λ(x)/m and m =

∫
W λ(x)dx.

Hence, the test statistic is defined as:

S =
∫

W

(
λ̂0,H(x)− ρ̂0,b(Z(x))

)2
dx, (2)

where λ̂0,H(x) = 1
N pH(x) ∑N

i=1KH (x−Xi)1{N 6=0} is the bivariate estimation for the density of events lo-
cation proposed by [7], H is a bandwidth matrix, pH(x) is the edge correction term, ρ̂0,b(Z(x)) =
ρ̂b(x)

N 1{N 6=0} with ρ̂b(x) = ∑N
i=1

1
g?(Z(Xi))

Lb (Z(x)−Z(Xi)), b is a scalar bandwidth parameter, K and L

are kernel functions, KH(u) = |H|−1/2K(H−1/2u), | · | denotes the determinant of a matrix, Lb(u) =
1
b L
(u

b

)
and g∗ is the unnormalised version of the derivative of the cumulative distribution function

G(z) =
∫

W 1{Z(u)≤z}du.

Under some regularity conditions, we determine the asymptotic distribution of the test, and it holds
that S−µS

σS
−→ N(0,1), where µS = A(m)|H|−1/2R(K) + 1

2µ2(K)
∫

λ0(x)tr2(HD2λ0(x))dx + 1
4µ

2
2(K)
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∫
tr2(HD2λ0(x))dx and σ2

S = A(m)|H|−1/2 ∫ ∫
λ2

0(x)λ0(y)(K ◦K)(H−1/2(x− y))dxdy+ 2A(m)|H|−1/2

R(λ0)R(K), with tr(·) denoting the trace of a matrix, ◦ the convolution between two functions, D2

the matrix of the second order derivatives, A(m) = E[ 1
N 1{N 6=0}], 1{·} the indicator function, µ2(K) =∫

R2 uuTK and R(·) the integral of the square of a function.

However, this asymptotic distribution requires some extra estimations, and as the convergence rate
may be slow it is not suitable for small patterns. Our proposal to deal with this inaccuracy is to use a
smooth bootstrap procedure to resample under the null hypothesis and calibrate the test.

The performance of all this methodology is analysed in an extensive simulation study including
several models with different covariates, in which we study the level as well as the power values of the
test. Moreover the proposed test is applied to two real data sets: the one formed by the Murchison gold
deposits with the distance to the geological faults as covariate, and the one composed by the wildfires in
Canada during June 2015 with meteorological covariates.

3 Two sample problem under the covariate dependent intensity model

Our aim in this section has been briefly pointed out by the end of the introduction: we want to test
whether two given independent patterns are originated by the same process, assuming that the theoretical
intensity depends on a known covariate in the way shown in (1). To check this hypothesis, we define a
new L2−distance based test statistic.

Let Xi with i = 1,2 be two point processes defined in a region W ⊂ R2, where W is assumed to
have finite positive area, X11, . . . ,X1N1 and X21, . . . ,X2N2 be two realisations of the processes where Ni are
the random variables counting the number of events and recall Z : W ⊂ R2→ R the spatial continuous
covariate exactly known in every point of the region of interest W . We denote by Z11, . . . ,Z1N1 and
Z21, . . . ,Z2N2 the realisations transformed through the covariate, i.e., Zi j = Z(Xi j).

Under model (1) let denote by λi(x) = ρi(Z(x)) the intensity functions corresponding to the processes
Xi with i = 1,2. We want to test the null hypothesis H0 : λ1(x) = λ2(x), x ∈W versus the two-sided
alternative. Following what it has been done in [3], [2] and [8], we use the density of events location to
define an equivalent null hypothesis. Hence, let fi(z) =

g?(z)ρi(z)
mi

; then, H0 : f1(z) = f2(z), z∈R. Remark
that this does not really need to be in R but in a subset of it covering the range of values of the covariate
Z.

To address the problem of defining an appropriate test, we need a measure between the two theoretical
densities which we use to define our statistic. In this case we have chosen the L2-distance and we can
define our test statistic S = ψ̂11+ ψ̂22− ψ̂12− ψ̂21, where taking into account the estimator introduced in
[2], we can define

ψ̂1 =
1

N2
1

N1

∑
i=1

N1

∑
j=1

g?(Z1i)

g?(Z1 j)
Lh1(Z1i−Z1 j)1{N1 6=0}, ψ̂12 =

1
N1N2

N1

∑
i=1

N2

∑
j=1

g?(Z2 j)

g?(Z1i)
Lh1(Z2 j−Z1i)1{N1 6=0,N2 6=0},

ψ̂2 =
1

N2
2

N2

∑
i=1

N2

∑
j=1

g?(Z2i)

g?(Z2 j)
Lh2(Z2i−Z2 j)1{N2 6=0}, ψ̂21 =

1
N1N2

N1

∑
i=1

N2

∑
j=1

g?(Z1i)

g?(Z2 j)
Lh2(Z1i−Z2 j)1{N1 6=0,N2 6=0},

with hi scalar bandwidths and L a univariate kernel function.
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Under some regularity conditions, we determine the asymptotic distribution of the test, and it holds
that S−µS

σS
−→ N(0,1), where µS = (A(m1)h1 +A(m2)h2)L(0) + o(A(m1)) + o(A(m2)) and σS =

2B(m1)
1
h1

R(L)ψ+2B(m2)
1
h2

R(L)ψ+A(m1)A(m2)ψR(L)
(

1
h1
+ 1

h2

)
+A(m1)A(m2)ψ

(
1
h1

∫
L(u)Lh2/h1(u)du

+ 1
h2

∫
L(u)Lh1/h2(u)du

)
+O(B(m1)+O(B(m2))), with B(mi) = E

[
1

N2
i
1{Ni 6=0}

]
and ψ ≡ ψ11 ≡ ψ22 ≡

ψ12 ≡ ψ21 under the null.

This asymptotic distribution also requires some extra estimations and, the slow convergence rate is
present here, son it may not be suitable in all the situations. Hence, we propose again to use an adapted
bootstrap procedure to calibrate the test.

The finite sample properties of the two sample test are evaluated through a simulation study. The
simulated models have been defined to represent real data sets such as the Murchison data and the Canada
wildfires data.
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Abstract. Wildfires can cause important economic and ecological disasters. Their prevention begins
with understanding the stochastic mechanisms governing the intensity of occurrences and the severity
of fires. We focus on wildfires in the Mediterranean region Bouches-du-Rhone (South of France) ob-
served since 1981, with burnt area larger than one hectare. Occurrences depend on the presence and
concomitance of several factors: climatic (temperature, humidity, wind speed), environmental (vegeta-
tion types, urbanization, road network) and human activity. Whilst human activity is the main direct
cause of wildfires, climatic and environmental conditions are a prior condition to their outbreak and
propagation. Therefore, the structure of relative risk of wildfires is highly complex and shows strong
variation over space and time and is driven by numerous covariates. Statistical challenges arise from
the multi-scale spatio-temporal structure of data defined over various supports like fine grids for land
use, coarse grids for fire position leading to positional uncertainty, and meteorological series observed
at irregularly spaced measurement sites. The spatial heterogeneity of wildfires depends on the spatial
distribution of current land use like vegetation type, urban zones or wetlands. We also show that
changes in vegetation due to past fires affect the probability of wildfire occurrence during a regenera-
tion period. Log-Gaussian Cox processes, along with the INLA method for inference and prediction,
are particularly useful to model clustered events. Here, we show that they can also deal with more
complex structures, allowing us to include the temporal inhibition at small spatial scales and thus
providing more accurate predictions.

Keywords. Point processes; Spatial/spatio-temporal lattice data; Computational statistics; Environ-
mental risk.

1 Introduction

Since 1973, the French Government maintains the continuously updated Prométhée database1 of wildfire
occurrences in the Mediterranean region to develop statistical tools for spatial and temporal comparisons
and a better knowledge of wildfire causes. Locations and dates of wildfires are recorded with associated
characteristics such as the burnt area. We analyze and model wildfires in Bouches-du-Rhone (Southern
France) since 1981 with burnt area larger than one hectare. Wildfire occurrence may depend on the pres-
ence and concomitance of several factors: climatic (temperature, humidity, wind speed), environmental

1http://www.promethee.com/

18



Gabriel et al. Modeling multi-scale space-time point patterns

(vegetation types, urbanization, road network) and human activity. Whilst human activity is the main
cause of wildfires, climatic and environmental conditions are a prior condition to their outbreak and their
propagation.

The analysis of point patterns allows us to highlight the factors driving trends and interactions in the
spatial distribution and the temporal structure of points and determine the observation scales of these
relationships. The methods for analyzing and modeling point processes have been used in the context of
wildfires [1, 2, 3, 4], but the spatial and temporal data have been treated separately or strongly aggregated
(per year, per spatial area) which is unsatisfactory when one wants to understand and model the stochastic
mechanisms of spatio-temporal interaction. However, some statistical methods exist for studying the
spatio-temporal structures of such data [5, 6]; they yield a mechanistic or empirical modeling approach
[7].

The spatio-temporal structure of the distribution of wildfires is very complex since, in practice, the
dependence cannot be separated in space and time. The spatial heterogeneity of wildfires depends on the
spatial distribution of current land use like vegetation, urban zones or wetlands [8, 9, 10, 2]. However,
as it will be shown, it also depends on the past, because changes in vegetation due to fires affect the
probability of wildfire occurrence during a regeneration period. In the literature, the hypothesis of sepa-
rability in space and time is often assumed without any test because it allows decomposing the problem
into two modeling steps, one in space and one in time, or to consider separable covariance matrices. This
simplifying assumption led thus to progress on other scientific barriers.

We aim to detect and model multi-scale spatio-temporal structures in wildfire occurrences. Log-
Gaussian Cox processes, along with the INLA method for inference and prediction, are particularly
useful to model clustered events (see, e.g., [10] and [2] in the context of wildfires). In this paper we
show that they can also deal with more complex structures, allowing further temporal inhibition at small
spatial scales and thus providing more accurate predictions.

2 Wildfire data and interaction of occurences over space and time

We consider a record of fire starting points for the years 1981 to 2015 for the Bouches-du-Rhone depart-
ment in Southern France whose surface area amounts to around 5100km2. The spatial resolution is given
by the DFCI coordinates spanning a grid in the Lambert 93 projection with quadratic grid cells covering
approximately 4km2 each. The point coordinates of fires correspond to the center of the grid cell where
the fire started. The value of burnt surface is also available for each event.

For weather data, we use freely available observation series from the Global Historical Climate Net-
work (GHCN) hosted by the National Climatic Data Center2 (NCDC). We here work with daily obser-
vation series of average temperatures, cumulated precipitation and maximum sustained wind speed for
one measurement station (Marignane Airport, close to Marseille) in the Bouches-du-Rhone department.

We explore the influence of land use and climatic covariates like temperature and precipitation on
the probability of event occurence.Also, we analyse interaction of wildfire occurences over space and
time with the spatio-temporal inhomogeneous K-function defined in [6]. We observe spatio-temporal
interaction, and particularly inhibition at small spatial distance certainly due to the absence of vegetation
and other combustible material burnt after a wildfire.

2www.ncdc.noaa.gov/cdo-web/
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3 Log-Gaussian Cox process models

We consider models with a stochastic intensity of log-Gaussian type and a space-year resolution for
incorporating covariate information. Models of different complexity are considered for a Gaussian
space-time effect W (s, t), whose spatial component is always based on the flexible yet computation-
ally convenient Matérn-like spatial Gauss–Markov random fields arising as approximate solutions to
certain stochastic partial differential equations (see [11, 13] for details). The model is specified for years
t ∈ {1981, . . . ,2015} in the following way:

Λ(s, t) = exp

(
β0 +βinhibzinhib(s, t)+ ∑

land use
βland,izland,i(s)+

3

∑
j=1

βclim, jzclim, j(t)+W (s, t)

)
, (1)

with covariates zland,i related to land use, zclim, j to climate and zinhib to fires in the same DFCI cell during
the 5 years preceding t.

We now explain the components in more detail. We have studied the following three structures for
W (s, t):

W (s, t) =W (s) spatial marginal effect, (2)

W (s, t) =W (s)+W (t) spatial and temporal marginal effects, (3)

W (s, t) =Wt(s) spatial effects i.i.d. in time for t = 1981, . . . ,2015. (4)

Models (2) and (3) can be considered either as a relatively simple log-Gaussian Cox processes, or as
a Bayesian model for a Poisson process where the prior for the intensity is purely spatial in (2) and is
space-time separable in (3). The marginal temporal effect W (t) is here chosen as a first-order random
walk with a sum-to-zero constraint. Model (4) incorporates higher stochasticity into the model through
its replicated spatial effects; it is therefore capable to model clustering of events at the yearly level.

In models (2) and (3), a purely temporal effect is given through ∑3
j=1 βclim, jzclim, j(t)+W (t), while

∑land use βland,izland,i(s)+W (s) is a purely spatial effect. The inhibition effect βinhibzinhib(s, t) is a novelty
in our model compared to the existing literature and breaks the space-time separation of our model.
It artificially integrates a repulsive pattern into the process, which remains well-defined since we can
simulate the process iteratively for each time step by conditioning on the realization of the preceding
time steps.

For estimating the posterior means of covariate coefficients and of the spatio-temporal effect W (s, t),
we use the framework of Integrated Nested Laplace Approximation [14], implemented in the INLA pack-
age of R [12]. Appropriate, only weakly informative priors were chosen for the estimated effects and
hyperparameters like the effective range and the variance of the spatial Gaussian fields.

Estimation results and fire risk prediction will be shared during the conference.

References

[1] Genton, M., Butry, D., Gumpertz, M., and Prestemon, J. (2006). Spatio-temporal analysis of wildfire ignitions
in the St Johns River water management district, Florida. International Journal of Wildland Fire 15, 87–97.

METMA IX Workshop 3

20



Gabriel et al. Modeling multi-scale space-time point patterns

[2] Serra, L., Saez, M., Mateu, J., Varga, D., Juan, P., Diaz-Avalos, C., and Rue, H. (2014). Spatio-temporal log-
gaussian cox processes for modelling wildfire occurrence: the case of catalonia, 1994–2008. Environmental
and Ecological Statistics 21(3), 531–563.

[3] Turner, R. (2009). Point patterns of forest fire locations. Environmental and Ecological Statistics, (16), 197–
223.

[4] Xu, H. and Schoenberg, F. (2011). Point process modelling of wildfire hazard in Los Angeles county, Cali-
fornia. The annals of Applied Statistics, The annals of Applied Statistics, 5, 684–704.

[5] Bonneu, F. (2007). Exploring and modeling fire department emergencies with a spatio-temporal marked point
process. Case Studies in Business, Industry and Government Statistics, 1, 139–152.

[6] Gabriel, E. and Diggle, P. (2009). Second-order analysis of inhomogeneous spatio-temporal point process
data. Statistica Neerlandica, 63, 43–51.

[7] Gabriel, E. (2016). Spatio-temporal point pattern analysis and modelling. In Encyclopedia of GIS, 2nd Edi-
tion.

[8] Juan, P., Mateu, J., and Saez, M. (2012). Pinpointing spatio-temporal interactions in wildfire patterns. Sto-
castic Environmental Research and Risk Assesment, 26(8), 1131–1150.

[9] Moller, J. and Diaz-Avalos, C. (2010). Structured spatio-temporal shot-noise cox point process models, with
a view to modelling forest fires. Scandinavian Journal ofStatistics, 37(1), 2–25.

[10] Pereira, P., Turkman, K., Amaral-Turkman, M., Sa, A., and Pereira, J. (2013). Quantification of annual
wildfire risk; a spatio-temporal point process approach. Statistica, 73(1), 55–68.

[11] Lindgren, F., Rue, H., and Lindstrom, J. (2011). An explicit link between Gaussian fields and Gaussian
Markov ranom fields: the stochastic partial differential equation approach. Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 73(4), 423–498.

[12] Lindgren, F. and Rue, H. (2015). Bayesian spatial modelling with r-inla. Journal of Statistical Software,
63(19).

[13] Simpson, D., Illian, J., Lindgren, F., Sorbye, S., and Rue, H. (2016). Going off grid: Computationally efficient
inference for log-Gaussian Cox Processes. Biometrika. In press.

[14] Rue, H., Martino, S., and Chopin, N. (2009). Approximate bayesian inference for latent gaussian models by
using integrated nested laplace approximations. Journal of the royal statistical society: Series b (statistical
methodology), 71(2):319–392.

METMA IX Workshop 4

21



A comparison of space-time estimation methods applied to air quality
forecasting

M. Beauchamp1,2∗, L. Malherbe2, C. de Fouquet 1, M. Valsania3, F. Meleux2 and A. Ung2

1 Mines ParisTech, Géosciences, Equipe géostatistique, 35 rue Saint Honoré, 77305 Fontainebleau, France;
maxime.beauchamp@mines-paristech.fr, chantal.de_fouquet@mines-paristech.fr
2 Institut National de l’Environnement Industriel et des Risques (INERIS), Direction des risques chroniques, Parc
Technologique Alata, 60550 Verneuil-en-Halatte, France; laure.malherbe@ineris.fr, frederik.meleux@ineris.fr,
anthony.ung@ineris.fr
3 University of Turin, Via Verdi, 8 - 10124 Turin; marta.valsania@edu.unito.it

Abstract. The national PREV’AIR system (www2.prevair.org) delivers daily analyses and forecasts of
different atmospheric pollutant concentrations over Europe and France. Forecast maps for the current
and next two days (D+0, D+1, D+2) are computed by kriging statistical forecasts at the monitor-
ing sites obtained by station specific multilinear regression models. Output data from the chemistry-
transport model (CMT) CHIMERE are also used as an external drift in the kriging. In this study two
kriging competitors are used: the usual space-time covariance-based kriging with external drift (KED)
involving some appropriate neighbourhood to deal with reasonable CPU time and the SPDE-based
kriging approach (SPDE). The performance is assessed using 2013 daily data and CMT simulations
over France. It will be shown that both local fitting of the drift by (KED) and more global estimation
made by (SPDE) can be a good alternative to the former (SA) framework.

Keywords. Prediction ; Generalized additive model ; Space-time kriging ; SPDE ; Air Quality

Introduction

The prediction problem in Geosciences is often addressed through a data assimilation scheme to deal
with the strong non-linearities of the underlying physical model. However, in Air Quality and because
the forcing due to the emissions is often predominant over the quality of the estimation for the initial
state, the so-called statistical adaptation that is a combination of local forecasts at the monitoring sites
coupled with a spatial kriging with external drift has proved its good performing skill. In this work, usual
covariance-based space-time kriging (KED) and SPDE-based kriging (SPDE) are confronted to (SA).
The basic framework for each estimation method is first reminded. Then, some operational performance
and cross-validation scores will be compared to the performance of the current statistical adaptation.

Space-time estimation methods

Let Z(xα, tk), α = 1, · · · ,N, k = 1, · · · ,M−1 denote the space-time dataset of air quality daily concentra-
tions observed at the monitoring sites xα between time t1 and tM−1, with possible missing values. Three
estimations methods are used for the prediction problem, i.e. estimating the value at location x0 in the
future tM+l, l > 0:
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1) Space and Time independent estimation A generalized additive model is built for each monitoring
sites xα:

Z(xα, tk) = β0 + ∑
i=1,··· ,p

fi
(
ϕi(xα, tk)

)
+ ε (1)

where ϕi(., .), i = 1, · · · , p are explanatory variables of the process Z(., .). The training dataset has to
be long, several years if possible. A backfitting algorithm involving a 2 degree of freedom smoothing
spline Si to estimate fi is used. The estimation at location x0 is given by a spatial kriging of the statistical
forecasts obtained by these station specific gam models.
2) Covariance-based kriging approach Z(x, t) is seen as a random function with deterministic part
µ(x, t) and a residual R(x, t):

Z(x, t) = µ(x, t)+R(x, t) (2)

A space-time kriging Z(x, t) = ∑α, k λα, kZ(xα, tk) is used for the estimation and the weights λα, k are
solution of the linear system:





n

∑
α=1

λαγ(xα−xβ, tk− tl)+µ0 +
p

∑
i=1

µiϕi(xβ, tl) = γ(xβ−x0, tk− t0) ∀β
n

∑
α=1

λα = 1

n

∑
α=1

λαϕi(xα, tk) = ϕi(x0, t0) ∀i

(3)

where γ(., .) denotes a space-time authorized variogram model, a Gneiting (Gneiting et al., 2007) or
product-sum (De Iaco et al., 2001) model for instance. Because space-time datasets are large, an appro-
priate space-time neighbourhood has to be used, thus enabling a local fitting of the drift.
3) SPDE kriging approach Starting from the representation:

Z(x, t) =
n

∑
k=1

ψl(x, t)ωk =
n

∑
k=1

ψs
i (x)ψ

t
j(t)ωk

where the basis functions are seen as the product of purely spatial basis functions ψs
i (s) and purely

temporal basis functions ψt
j(t), then the space-time stochastic PDE (Lindgren et al., 2011) defined by:

∂
∂t
(κ(s)2−∆)α/2(τ(s)x(s, t)) = W (s, t), (s, t) ∈D×R

generates a precision matrix Q for the Gaussian weights ωk so that :

Q = QT⊗QS

Qs and Qt are respectively the precision matrices of the purely spatial model and the Markovian random
walk, meaning that this model deals with separable covariances (Cameletti et al., 2012).

Results

Some performance analyses are given for the daily prediction of PM10 and O3 carried out in 2013. For
kriging with external drift (KED), CHIMERE simulations are carried out over the FRA4k domain cover-
ing France and some parts of its neighbouring countries. For statistical adaptation (SA) and SPDE-based
kriging (SPDE), some meteorological variables are also used, namely the daily temperature, average
boundary layer height, and average specific humidity simulated by the meteorological model used by
CHIMERE. (SA) also uses the daily concentration for D−1 as a predictor.
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A look at cross-validation

Table 1 shows the performance, in terms of correlation, root mean square error (RMSE) and normalized
mean bias (NMB) of the rough CHIMERE outputs, (SA) and (KED). Regarding these estimators, two
ways of assessing the quality of the prediction is possible:
1) the cross-validation, i.e. to predict Z(xβ, t0) the observational data for D+0 are not known. For (SA),
the surrounding value of Z(xα, t0), α 6= β, are first estimated by their corresponding gam model before
the spatial interpolation. For (KED), the kriging system is built upon the dataset Z(xα, tk)}, k 6= 0, α 6= β.
In any case, for (SA) and (KED), the whole time series at xβ is removed so that this cross-validation will
indicate the performance of the statistical estimation in area without any information in time and space.
2) the operational prediction score, i.e. the scores that would be obtained by comparing the predictions
for D+0 made using all the data (including the values in the past at xβ) to the observations collected the
same day.

daily data
Correlation RMSE NMB

PM10

KED 0.48 9.48 5.2
GAM 0.51 10.11 2.79

O3

KED 0.65 12.86 0.09
GAM 0.67 13.97 -1.22

Table 1: Cross-validation prediction score
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Figure 1: Correlation and RMSE (PM10) of CHIMERE outputs, the predictions made by (SA) and
(KED), and the cross-validations made by (SA) and (KED)

In areas well informed, with a high density of stations in the monitoring network, the prediction score
indicates that using the gam model performs a bit better, which sounds normal because it benefits from
the long training period of the model. At the same time, the cross-validation, which is a better indicator
for assessing the quality of the final prediction map, shows that when the density of stations get lower,
(KED) becomes more competitive and is better than (SA).

Operation prediction scores

Regarding (SPDE), only the operational performance score has been computed so far in the study.
Though, it is still a good indicator for the performance of the prediction (see average scores in Table
2). To not increase the CPU time, about 2500 elements are used in the triangulation. Performance scores
for PM10 on the whole second semester of 2013 reveals that SPDE-based kriging is now the most effi-
cient. In addition, if by construction, (SA) and (KED) are unbiased, the variance of their errors is still
quite large for space-time extrapolation. This variance is drastically reduced by the SPDE approach (see
Figure 2).
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daily data
Correlation RMSE NMB

PM10

KED 0.63 8.24 -1.27
GAM 0.78 5.84 4.10
SPDE 0.80 5.67 -3.13

O3

KED 0.79 12.50 0.25
GAM 0.88 8.99 0.85
SPDE 0.86 9.46 -1.12

Table 2: Operational prediction scores
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Figure 2: Correlation, RMSE and NMB (PM10) of CHIMERE (AS), (KED) and (SPDE)

Conclusion

Both operational and cross-validation performance scores shows that space-time framework through
kriging estimation is a solution to provide good predictions of the main air quality regulatory pollutants.
The distinction between space and time in the statistical adaptation framework enables to introduce some
sort of local non-stationarities that makes the prediction very good at the stations but its quality decreases
quite fast when moving away from the available observations. Space-time kriging is more consistent
regarding this point. Last, in the version of the SPDE approach, despite a modelling simpler for the
covariance of the residuals than the one used in the usual covariance-based kriging, its performance is
better. Probably because the drift is better estimated within this approach, which is finally more important
than a better knowledge of the space-time structure of potentially larger residuals.
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Abstract. In the field of epidemiology, studies are often focused on mapping diseases in relation to time
and space. Hierarchical modeling is a common flexible and effective tool for modeling problems related
to disease spread. In the context of oil palm plantations infected by the fungal pathogen Ganoderma
boninense, we propose and compare two spatio-temporal hierarchical Bayesian models addressing the
lack of information on propagation modes and transmission vectors. We investigate two alternative
process models to study the unobserved mechanism driving the infection process. The models help
gain insight into the spatio-temporal dynamic of the infection by identifying a genetic component in
the disease spread and by highlighting a spatial component acting at the end of the experiment. In
this challenging context, we propose models that provide assumptions on the unobserved mechanism
driving the infection process while making short-term predictions using ready-to-use software.

Keywords. Bayesian modelling; Disease mapping; State-space models; Spatio-temporal models.

1 Introduction

Basal stem rot caused by the fungal pathogen Ganoderma boninense is the major oil palm disease in
Southeast Asia and is able to kill 80% of palm trees at the end of a planting cycle. While the struggle
against G. boninense is a major concern in oil palm plantations, few studies have investigated the prop-
agation mode or the genetic diversity and evolutionary history of the fungus. Two disease propagation
modes have been documented to date: vegetative spread and basidiospore dissemination. But the im-
portance of each mode and their relationships are not well known. Moreover while in most infectious
diseases the transmission vectors are well established and helpful to understand the spread of the dis-
ease, G. boninense transmission vectors have not been well identified. Another factor involved in the
infection spread concerns the genetic background of the host, which is crucial in the resistance to the
infection. Most studies on G. boninense infection have shown a slow propagation with the apparition
of the first symptoms after 4−5 years. As a result, appropriate statistical models capable of addressing
the lack of information on the disease propagation modes and transmission vectors are needed for ana-
lyzing spatially and/or temporally structured data. In our context of an oil palm plantation infected by
G. boninense with little knowledge, two hierarchical Bayesian models were investigated to study unob-
served mechanisms driving the infection process and to make short-term predictions using ready-to-use
software. Both approaches are parameter-driven and based on the modeling of two stochastic processes
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including spatial and temporal effects as well as interactions between space and time. The first approach
directly integrates the status of the plot and neighborhood plots [9], while the second additively intro-
duces spatial, temporal and spatio-temporal effects by using a tensor product B-splines [1]. The former
may be compared to endemic-epidemic models, and the latter explores different types of interaction to
capture the spatio-temporal dynamics of the infection. Binomial distribution will be considered instead
of the commonly used Poisson distribution. Inference is achieved with the integrated nested Laplace
approximation (INLA) approach as an efficient alternative to Markov chain Monte Carlo (MCMC) al-
gorithms for inference [8]. In this talk, we present the first spatio-temporal analysis for the infection
by G. boninense. The results provide a better understanding of the unobserved mechanism driving this
infection

2 Methods

Let nst f be the number of palm trees at risk in plot s (s = 1, . . . ,S) at time t (t = 1, . . . ,T ) belonging to
family f ( f = 1, . . . ,F). The proposed models can be formulated as hierarchical models:

1. Data model: Yst f |πst f ∼ Binomial(nst f ,πst f ), s = 1, . . . ,S, t = 1, . . . ,T f = 1, . . . ,F where yst f

is the number of newly infected palm trees for plot s belonging to family f at time t, and πst f the
associated probability.

2. Process model: log
(

πst f
1−πst f

)
=ηst f = µ+α f +us+θs+γt +φt +δst , with µ denoting the intercept.

α f is a fixed effect corresponding to the effect being in family f relative to the referent family
f = 1, with α1 = 0. us and θs correspond to unstructured and structured random spatial effects,
respectively. Time effects defined by γt and φt can also be defined by different parameterizations.
For a better understanding of the disease mapping, an interaction between space and time, δ =
(δ11, . . . ,δST ), is added in the equation of process model. Indeed only the main spatial and temporal
effects are not enough for explaining differences in the temporal trend of infection risk for different
geographical areas.

3. Parameter models: Parameter models refer to prior distributions for unknown parameters.

For both approaches the objectives are: (i) to model spatio-temporal data using relevant features for un-
derstanding the mechanism underlying the infection and, (ii) to be able to predict new infected trees. We
use the deviance information criterion (DIC), and the Watanabe-Akaike information criterion (WAIC),
an improvement on the DIC. For both, smaller values indicate a superior model. The probabilistic pre-
diction performance can be evaluated using proper scoring rules [5]: the squared error score, the mean
logarithmic of conditional predictive ordinate [7], and the logarithmic score.

2.1 Multivariate dynamic model

The first proposed model is based on a dynamic linear model. Dynamic models belong to the important
class of state-space models and are mainly used in the context of an observable process depending on an
unobserved state process. In the disease context, the mechanism driving the infection may be considered
as an unobserved process. Based on [9], we use an autoregressive process for each plot, and an additional
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component is integrated to model the spatial spread as a weighted sum of the past states in neighboring
plots: ηst f = µ+α f +βt +ξst

ξst = λ ·ξs,t−1 +ρ ·∑
s6=s′

ws′s ·ξs′,t−1

︸ ︷︷ ︸
spatial spread

+εst

with µ denoting the intercept, α f the effect of being in family f relative to the referent family f = 1,
and β the regression coefficient associated with time t. An autoregressive process ξs = (ξs,1, . . . ,ξs,T )

′

governs the unobserved pattern of the spread in each plot s. The errors ε = (ε11, . . . ,εST )
′ are assumed

to be independent and identically distributed normally distributed with variance σ2
ε . The associated ws′s

weights are defined by 1 if two plots are neighbors, 0 otherwise.

2.2 B-spline model

Another approach considers an additive model for the process model. For minimizing the number of
random effects resulting from the combination of spatial and temporal effects, the space-time interaction
surface term is modeled with a tensor product B-spline [1]. The interaction term δst is defined as follows:
δst = ∑K

k=1 bktBsk, k = 1, . . . ,K, with Bsk being the tensor product of two univariate B-spline functions of
degree 3 (one for the “x", and one for the “y"), and K the number of basis functions. The spatio-temporal
structure of the interaction term is specified through the prior distribution on the basis coefficients. Four
interaction types are investigated [1, 3, 6]: 1) Type NoST: the product of prior distributions without any
spatial and temporal structure for the basis coefficients,2) Type TnoS: the product of prior distributions
with the temporal structure defined by a first-order random walk model and prior distributions without
spatial structure, 3) Type SnoT: the product of an intrinsic conditional autoregressive (ICAR) prior [2]
and prior distribution without any temporal structure, and 4) Type ST: the product of the RW1 prior and
ICAR prior.

3 Application

Two modeling approaches are applied to analyze data on G. boninense infection in an oil-palm multi-
parent population consisting of 14 full-sib families. This genetic trial was naturally infected and the
infection status was recorded, most of time, biannually on 1,200 Eg9PP individuals over 25 years. The
14 full-sib families were represented with at least five replications, with each replication consisting of a
plot with 15 full-sib individuals. In the following, data were aggregated by years and plots.
In terms of goodness-of-fit, B-spline models provide better fit to data compared to multivariate dynamic
models. Using the tensor product of B-splines allows more complex modeling of interaction terms with
weak sensitivity to the choice of basis number and locations compared to other tensor product choices.
Thus this modeling helps gain insight into the spatio-temporal dynamics while yielding better results.
The disadvantage of multivariate dynamic models in terms of goodness-of-fit may be due to an estima-
tion of a common auto-regressive parameter for all plots. This limitation is due to the R-INLA package
which does not allow consideration of the auto-regressive parameter as a random effect.
With regards to predictive performance, multivariate dynamic models performed better in most cases.
Both modeling approaches captured the global infection dynamics. However multivariate dynamic mod-
els tended to smooth the estimations compared to B-spline models. In case of a peak in the percentage
of infected palm trees, the prediction was more difficult for both approaches. As expected, the prediction
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of the null percentage of infection was challenging for all models. The difficulty encountered in making
short-term predictions by both approaches may be explained by the lack of knowledge on infection by
G. boninense and by the real dataset that we considered.

4 Conclusion

In this study, two spatio-temporal hierarchical Bayesian approaches were investigated to model unob-
served mechanisms driving the infection process due to G. boninense in oil palm plantations and to
make short-term predictions with ready-to-use software. The main challenge was to address the lack
of information on the disease propagation modes and transmission vectors by focusing on models with
ready-to-use software. Two complementary models were proposed and provided first indications on the
disease spread. Firstly, the comparison of different models revealed that the infection dynamics differed
between families. Secondly, a spatial component involved at the end of the experiment was observed.
Concerning the propagation modes, unfortunately, as the results were not able to distinguish the greatest
propagation mode, further analyses with external factors are needed. The proposed models considered
the neighborhood constant over time with the same effect for all neighbors. An interesting development
would be to consider a dynamic neighbor selection, as proposed in [4], or/and to assume different weights
wss′ over time and according to the infection levels. Although the R-INLA package permits high flexibil-
ity for modeling complex hierarchical models, these types of models cannot be fit. Other softwares such
as JAGS or BUGS could be explored.
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Abstract. The flexibility of the Bayesian approach to account for covariates with measurement error is
combined with semiparametric regression models for a class of continuous, discrete and mixed univari-
ate response distributions with potentially all parameters depending on a structured additive predictor.
Markov chain Monte Carlo enables a modular and numerically efficient implementation of Bayesian
measurement error correction based on the imputation of unobserved error-free covariate values. We
allow for very general measurement errors, including correlated replicates with heterogeneous vari-
ances. The proposal is applied to the assessment of a soil-plant relationship crucial for implementing
efficient agricultural management practices. Observations on multi-depth soil information and forage
ground-cover for a seven hectares Alfalfa stand in South Italy were obtained using sensors with very
refined spatial resolution. Estimating a functional relation between ground-cover and soil with these
data involves addressing issues linked to the spatial and temporal misalignment and the large data size.
We propose a preliminary spatial interpolation on a lattice covering the field and subsequent analy-
sis by a structured additive distributional regression model accounting for measurement error in the
soil covariate. Results are interpreted and commented in connection to possible Alfalfa management
strategies.

Keywords. Bayesian modeling, computational statistics, semiparametric models.

1 Introduction

Standard regression theory assumes that explanatory variables are deterministic or error-free, but this
assumption is quite unrealistic for many biological processes and replicated observations of covariates
are often obtained to quantify the variability induced by the presence of measurement error (ME). The
most well known effect of measurement error is the bias towards zero induced by additive i.i.d. mea-
surement error, but under more general measurement error specifications (as considered in this paper),
different types of misspecification errors are to be expected [3, 6]. This is particularly true for semi-
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parametric additive models, where the functional shape of the relation between responses and covariates
is specified adaptively and therefore is also more prone to disturbances induced by ME. Recent papers
advocate the hierarchical Bayesian modeling approach as a natural route for accommodating ME uncer-
tainty in regression models. In this work we introduce a functional ME modeling approach allowing for
replicated covariates with ME within a flexible class of regression models recently introduced, namely
structured additive distributional regression models [4]. In this modeling framework, each parameter of
a class of potentially complex response distributions is modeled by an additive composition of different
types of covariate effects, e.g. non-linear effects of continuous covariates, random effects, spatial effects
or interaction effects. We allow for quite general measurement error specifications including multiple
replicates with heterogeneous dependence structure. From a computational point of view, based on the
seminal work [2] for Gaussian scatterplot smoothing and [5] for general semiparametric exponential fam-
ily and hazard regression models, we develop a flexible fully Bayesian ME correction procedure based
on Markov chain Monte Carlo (MCMC) techniques to generate observations from the joint posterior
distribution of structured additive distributional regression models. ME correction is obtained by the im-
putation of unobserved error-free covariate values in an additional sampling step. Our implementation is
based on an efficient binning strategy that avoids recomputing the complete design matrix after imputing
true covariate values and combines this with efficient storage and computation schemes for sparse matri-
ces. The main motivation of our investigation comes from a case study on the use of proximal soil-crop
sensor technologies to analyze the within-field spatio-temporal variation of soil-plant relationships in
view of the implementation of efficient agricultural management practices. More precisely, we analyze
the relationship between multi-depth soil information indirectly assessed through the use of high resolu-
tion geophysical soil proximal sensing technology and data of forage ground-cover variation measured
by a multispectral radiometer within a seven hectares Alfalfa stand in South Italy.

2 Measurement Error Correction in Distributional Regression

The main motivation for our modeling proposal comes from the need to estimate the nonlinear depen-
dence of ground-cover (NDVI) on soil information (Electro Resistivity, ER) by a smooth function, ac-
counting for the heterogeneity in the position and scale of the response due to the sampling time, for the
repeated measurements of the soil covariate and for the residual variation of unobserved spatial features.

2.1 Distributional Regression

Assume that independent observations (yi,νi), i = 1, . . . ,n, are available on the response yi and covariates
νi and that the conditional distribution of the responses belongs to a K-parametric family of distribu-
tions such that yi|νi ∼ D(ϑ(νi)) and the K-dimensional parameter vector ϑ(νi) = (ϑ1(νi), . . . ,ϑK(νi))

′

is determined based on the covariate vector νi. More specifically, we assume that each parameter is
supplemented with a regression specification ϑk(νi) = hk(ηϑk(νi)), where hk is a response function that
ensures restrictions on the parameter space and ηϑk(νi) is a regression predictor. In our analyses, we will
consider one specific special case where yi ∼ Beta(µ(νi),σ2(νi)), i.e. responses are conditionally beta
distributed with regression effects on location and scale. For both parameters µ(νi) and σ(νi)

2 of the beta
distribution we employ a logit link, since they are restricted to the unit interval.
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2.2 Structured Additive Predictor

For each of the predictors, we assume an additive decomposition as ηϑk(νi) = βϑk
0 + f ϑk

1 (νi) + . . .+

f ϑk
Jk
(νi), i.e. each predictor consists of a total of Jk potentially nonlinear effects f ϑk

j (νi), j = 1, . . . ,Jk,

and an additional overall intercept βϑk
0 . The nonlinear effects f ϑk

j (νi) are a generic representation for a
variety of different effect types (including nonlinear effects of continuous covariates, interaction surfaces,
spatial effects, etc.). Any of these effects can be approximated in terms of a linear combination of
basis functions as f (νi) = ∑L

l=1 βlBl(νi) = b′iβ, where we dropped both the function index j and the
parameter index ϑk for simplicity, Bl(νi) denotes the different basis functions with basis coefficients βl
and bi = (B1(νi), . . . ,BL(νi))

′ and β = (β1, . . . ,βl)
′ denote the corresponding vectors of basis function

evaluations and basis coefficients, respectively. Since in many cases the number of basis functions will
be large, we assign informative multivariate Gaussian priors p(β|θ) ∝ exp

(
−1

2 β′K(θ)β
)

to the basis
coefficients to enforce certain properties such as smoothness or shrinkage. The specific properties are
determined based on the prior precision matrix K(θ) which itself depends on further hyperparameters θ.

2.3 Measurement Error

In our application we are interested in estimating the nonlinear effect f (x) in one of the predictors of
a distributional regression model where instead of the continuous covariate x we observe M replicates
x̃(m)

i = xi+u(m)
i , m = 1, . . . ,M, contaminated with measurement error u(m)

i . For the measurement error,
we consider a multivariate Gaussian model such that ui ∼ NM(0,Σu,i), where ui = (u(1)i , . . . ,u(M)

i )′ and
Σu,i is a known, pre-specified unstructured covariance matrix. The basic idea in Bayesian measurement
error correction is now to include the unknown, true covariate values xi as additional unknowns to be
imputed by MCMC simulations along with estimating the other parameters in the model. This requires
that we assign a prior distribution to xi as well and rely on the simplest version xi ∼ N(µx,τ2

x), where we
achieve flexibility by adding a further level in the prior hierarchy via µx ∼ N(0,τ2

µ) and τ2
x ∼ IG(ax,bx).

To obtain diffuse priors on these hyperparameters, we use τ2
µ = 10002 and ax = bx = 0.001 as default

settings.

3 Case study

Given the aim of this work and the data size (ranging from 91438 to 222278 spatial points) , the spatial
resolution was downscaled by interpolating samples to a 2574 cells square lattice overlaying the study
area. Given the different number of sampled points corresponding to each sampling occasion (NDVI)
and survey (ER), we used a proportional nearest neighbors neighborhood structure to compute the down-
scaled values. At each grid point we calculated the neighbors’ means for both NDVI and ER, while
neighbors’ variances and covariances between depth layers were obtained for ER. Such a by-product of
the downscaling of the original data is plugged into the model likelihood. For available NDVI record-
ings, we consider Beta distributional regression models and specify the two predictors as follows. For
s = 1, . . . ,2574 grid points and t = 1, . . . ,4 time points, the structured additive predictor of the location
parameter is determined as an additive combination of three linear and functional effects: a linear sea-
sonal effect, a tensor product spatial effect and a nonlinear smooth effect of the continuous covariate ER.
The linear predictor of the scale parameter is assumed to depend only on the effect of time, thus allowing
heteroscedasticity of seasonal NDVI recordings. The Metropolis-Hastings algorithm, implemented using
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Figure 1: Smooth estimates of ER effects and residual spatial effects (both on the logit scale). Dotted
vertical lines locate ER cut-offs corresponding to different monotonic soil-plant relationships.

BayesX [1], to sample the posteriors of the Beta models, required runs of 50000 iterations with 35000
burnin and thinning by 15. Convergence was reached and checked by visual inspection of the trace plots
and standard diagnostic tools. Based on the resulting estimated smooth functions two ER cut-offs (at 10
and 20 Ohm m) are proposed that can be used to split the field in three areas characterized by a different
monotonic soil-plant relationship: Zone i: ER < 10 Ohm m, where NDVI grows with ER and very low
ER readings correspond to intermediate to high NDVI values; Zone ii: 10 Ohm m < ER < 20 Ohm m,
where ER is negatively related to NDVI and soil factors affecting ER act almost linearly and consistently
on plant performance; Zone iii: ER > 20 Ohm m, where despite the large variation in ER there is a
limited NDVI-soil responsiveness and NDVI is constantly low. Each zone conveys information on the
shape and strength of the association between soil and crop variability, thus the proposed field zonation
helps discerning areas where even a little change in soil properties can affect plant productivity (zone
ii) from areas where soil environment is not practically alterable (zone iii) or in-season evaluations are
possibly needed (zone i).
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Abstract. We introduce a Bayesian multivariate hierarchical framework to estimate a space-time pro-
cess model for a joint series of monthly extreme temperatures and amounts of rainfall. Data are avail-
able for 360 monitoring stations over 60 years, with missing data affecting almost all series. Model
components account for spatio-temporal correlation and annual cycles, dependence on covariates and
between responses. Spatio-temporal dependence is modeled by the nearest neighbor Gaussian process,
response multivariate dependencies are represented by the linear model of coregionalization and ef-
fects of annual cycles are included by a circular representation of time. The proposed approach allows
imputation of missing values and interpolation of climate surfaces at the national level. It also provides
a characterization of the so called Italian ecoregions, namely broad and discrete ecologically homo-
geneous areas of similar potential as regards the climate, physiography, hydrography, vegetation and
wildlife. To now, Italian ecoregions are hierarchically classified into 4 tiers that go from 2 Divisions to
35 Subsections and are defined by informed expert judgments. The current climatic characterization
of Italian ecoregions is based on bioclimatic indices for the period 1955-2000.

Keywords. Bayesian modelling; Computational statistics; Geostatistics; Weather and Climate

1 The problem

Climate elements and regimes, such as temperature, precipitation and their annual cycles, primarily affect
the type and distribution of plants, animals, and soils as well as their combination in complex ecosys-
tems [2]. The ecological classification of climate represents one of the basic steps for the definition and
mapping of ecoregions, i.e. of broad ecosystems occurring in discrete geographical areas [1]. In keeping
with these assumptions, a hierarchical classification of Italian ecoregions was recently obtained by in-
formed expert judgments, including biogeography, physiography and climate among the main diagnostic
features [3]. The Italian ecoregions are arranged into four hierarchically nested tiers, which consist of 2
Divisions, 7 Provinces, 11 Sections and 35 Subsections. The climatic features adopted for the diagnosis
and description of the Italian ecoregions refer to bioclimatic indices that date back to the period 1955-
2000. The primary focus of this work is the characterization of Italian ecoregions in terms of current
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and past climatic conditions and involves summarizing climate variables at the ecoregion level, in order
to evaluate climate impacts on ecosystems at the meso-scale and formulate reliable biodiversity conser-
vation strategies. The secondary objective of our work is climate mapping. We address this issue by a
fully model-based approach, relying on a stochastic model that accounts for some fundamental features
of the multivariate spatio-temporal field that generates the data, i.e. correlation among climate variables
and space-time variability. Estimation is embedded in the Bayesian hierarchical Gaussian modeling
framework that allows control over various sources of uncertainty. While the richness and flexibility of
spatio-temporal stochastic process models are indisputable, their computational feasibility and imple-
mentation pose some challenges for large datasets that are tackled using the nearest neighbor Gaussian
process (NNGP) [5].

2 The data and the Model

Let s ∈ S ⊂ Rd , with d = 2, and t ∈ T ⊂ R be spatial and temporal coordinates respectively, and let
Y ∗1 (s, t), Y ∗2 (s, t) and Y ∗3 (s, t) represent the precipitation level, minimum and maximum temperature ob-
served at (s, t). Then these variables have the following constraints: Y ∗1 (s, t) ≥ 0 and Y ∗3 (s, t) ≥ Y ∗2 (s, t).
To simplify modeling and computations, we prefer to work with latent variables defined over the entire
real line R, embedding the above constraints in the variable definitions. Latent variables Y1(s, t), Y2(s, t)
and Y3(s, t) are defined as follows:





Y1(s, t) = Y ∗1 (s, t) if Y ∗1 (s, t)> 0,
Y1(s, t)≤ 0 if Y ∗1 (s, t) = 0,
Y2(s, t) = Y ∗2 (s, t),
Y3(s, t) = Y ∗3 (s, t)−Y ∗2 (s, t) if Y ∗3 (s, t)−Y ∗2 (s, t)> 0,
Y3(s, t)≤ 0 if Y ∗3 (s, t)−Y ∗2 (s, t) = 0.

Each latent response Yi, i = 1,2,3 is described by a combination of fixed and random terms:

Yi(s, t) = X(s)βzk(s)+ωi(s, t)+λi(s, t)+ εi(s, t) (1)

with εi(s, t)
iid∼ N(0,σ2

ε,i). Here X(s) = (1,X(s)) and X(s) is the elevation of site s. The integer valued
indicator zk(s)⊂ Z+ is the ecoregion label for the kth ecoregion tier: with k = 1 we have one ecoregion
covering the entire country, while k = 5 returns the finer classification with 35 ecoregions. The term
λi(s, t) describes the monthly effect of the annual cycle and we model it as

λi(s, t)∼ N
(
0,σ2

cy,i exp(−φcy,ih∗t )
)
, i = 1,2,3, (2)

where h∗t = ht modL is a circular distance with period L = 1 year. Finally, the random vector ω(s, t) =
(ω1(s, t),ω2(s, t),ω3(s, t))′ is a multivariate spatio-temporal Gaussian process (GP) with dependent com-
ponents, i.e ω(s, t) = Aw(s, t), where w(s, t) = (w1(s, t),w2(s, t),w3(s, t))′, wi(s, t) ⊥ w j(s, t), for all
(s, t)’s with wi ∼ GP(0,C(hs,ht ;θi)). For C(hs,ht ;θi) we choose the general non-separable space-time
correlation structure [8]

C(hs,ht ;θi) =
1

(φti,i|ht |2αi +1)τ exp
(
− φsp,i‖hs‖2γi

(φti,i|ht |2αi +1)ηiγi

)
. (3)

Remark that different specifications of matrix A can define different process structure [7]. In this work
we use A = ΨΓΨ′, where Γ = diag(γ1,γ2,γ3) is the diagonal matrix of the square rooted eigenvalues
of Σ = AA′ and Ψ is the orthogonal matrix of its eigenvectors; this choice guarantees that the process is
invariant under reordering of the three observed variables.

METMA IX Workshop 2

35



Mastrantonio G. et al. A Hierarchical Multivariate Spatio-Temporal Model

φsp φt φcy η σ2
cy σ2

ε σ2
ω

Y1
Est. 0.188 28.979 15.210 0.774 0.617 0.176 0.413
(CI) (0.184 0.192) (28.871 29.072) (14.972 15.394) (0.774 0.775) (0.612 0.623) (0.175 0.178) (0.409 0.416)

Y2
Est. 0.138 9.628 10.176 0.943 6.968 0.008 0.050
(CI) (0.137 0.140) (9.476 9.750) (10.102 10.239) (0.942 0.943) (6.830 7.092) (0.008 0.008) (0.050 0.051)

Y3
Est. 0.431 23.814 9.760 0.166 2.799 0.062 0.525
(CI) (0.429 0.432) (23.576 23.995) (9.690 9.835) (0.165 0.168) (2.647 2.919) (0.061 0.062 ) (0.519 0.532)

Table 1: Posterior estimates of the Gaussian process and annual cyclical component parameters.

σ2
ω σ2

cy σ2
ε

Y1 0.342 0.512 0.146
Y2 0.007 0.992 0.001
Y3 0.155 0.827 0.018

Table 2: Proportions of the space-time, cyclical and residual components of the variance for each climate
variable.

2.1 NNGP

To tackle the computational problems we use the NNGP. The basic idea is to write the joint density of the
GP as the product of conditional densities. This multivariate density is approximated substituting each
conditional set with smaller subsets containing at least m elements. More precisely

f (ω) =
N

∏
n=1

f (ωn|ωn−1, . . . ,ω1)≈
N

∏
n=1

f (ωn|Ωn(m))

withω0 = /0 and where Ωn(m)⊆ (ωn−1, . . . ,ω1)
′ is a subset that contains at most m elements of (ωn−1, . . . ,ω1)

′.
As shown by [4], the quality of the approximation increases with m and the best results are achieved if
we choose the m elements of Ωn that have the higher correlation with ωn.

3 Model choice and posterior estimates

We estimated nine different models, varying the number of neighbors in the NNGP and the ecoregional
hierarchical tier: m = {10,15,20} and k ∈ {3,4,5}, respectively. Weakly informative priors were used
throughout and the MCMC was implemented with 100000 iterations, a burn-in phase of 70000 and
thinning by 12, keeping 2500 samples for posterior inferences. Posterior estimates were obtained in about
three days and were implemented on the TeraStat cluster [6]. The choice among alternative specifications
of the same model was performed using the DIC [9]. As expected, the largest number of neighbors always
returns the smallest DIC value for a given k. In the following, we are going to report on parameter
estimates and predictions obtained with the chosen model, that is the one with m = 20 and k = 3.
Posterior estimates of the GP and annual cyclical component parameters (see equations (2) and (3)) are
reported in Table 1 with their 95% credible intervals (CI). In Table 2 we show the proportion of the
variance due to the space-time, the cyclical and the residual component for each response variable, in
order to appreciate the relevance of each of the three components in explaining the total variation.
Table 1 shows that the three climate variables have non-separable space-time dynamics, as CIs for the η

parameter are never close to 0. Practical ranges and covariances of the three components in (1) provide
useful information on the extent of the spatial, temporal and annual cyclical dependence. The spatial
practical ranges of Y1, Y2 and Y3 are respectively 15.95 km, 21.676 km and 6.967 km, while in terms of
time dependence we have the following practical ranges: 37.78 days, 113.73 days and 45.98 days for Y1,
Y2 and Y3, respectively, and, finally, the annual cyclical effect φcy has similar behavior for the second
and third variable, with practical ranges 71.99 days (Y1), 107.60 days (Y2) and 112.19 days (Y3): annual
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cycles are longer and almost seasonal (4 months long, as expected) for the minimum temperature and the
temperature range, while a shorter cycle is estimated for the rain. Measures of the correlation between
climate variables are also obtained and they are all far from zero.

4 Concluding remarks and future developments

The future will find us working on a more detailed bioclimatic characterization of the Italian ecore-
gions, obtaining parameter estimates for all available ecoregional tiers, including Divisions, Sections
and Subsections. Further, as new ecoregional boundaries have recently been proposed mainly based on
biogeographic and physiographic considerations (Blasi et al., unpublished data), the model could be ap-
plied to develop a climatic characterization of the new strata, comparing results to those reported in this
paper.

Acknowledgements The first three authors are partially supported by the MIUR-PRIN grant Epha-
Stat (20154X8K23-SH3).
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Abstract. The selection of appropriate hyperpriors for variance parameters is an important and sen-
sible topic in all kinds of Bayesian regression models involving the specification of (conditionally)
Gaussian prior structures where the variance parameters determine a data-driven, adaptive amount of
prior variability or precision. We consider the special case of structured additive distributional regres-
sion where Gaussian priors are used to enforce specific properties such as smoothness or shrinkage
on various effect types combined in predictors for multiple parameters related to the distribution of
the response. Relying on a recently proposed class of penalised complexity priors motivated from a
general set of construction principles, we derive a hyperprior structure where prior elicitation is facil-
itated by assumptions on the scaling of the different effect types. The posterior distribution is assessed
with an adaptive Markov chain Monte Carlo scheme and conditions for its propriety are studied the-
oretically. We investigate the new type of scale-dependent priors in simulations and two challenging
applications, in particular in comparison to the standard inverse gamma priors but also alternatives
such as half-normal, half-Cauchy and proper uniform priors for standard deviations.

Keywords. Kullback Leibler divergence; Markov chain Monte Carlo simulations; Penalised complexity
prior; Penalised splines; Propriety of the posterior.

1 Introduction

Structured additive regression models are an important model class for regression modelling in various
areas of applications. They combine the flexibility of generalised additive models with the inclusion
of random effects, spatial components and further types of regression effects. While originally being
restricted to responses from the exponential family, structured additive regression has recently been ex-
tended to a much broader class of response types known as distributional regression.
In these models, it is assumed that the (conditionally) independent response variables yi, i = 1, . . . ,n,
given some covariate information νi follow parametric distributions with density p(yi|ϑi1, . . .ϑiK) and
distribution parameters ϑik, k = 1, . . . ,K. Each of the latter is linked to a structured additive predictor
ηik via a suitable one-to-one transformation hk, i.e. hk(ηik) = ϑik. Dropping the parameter index k, the
predictors are composed additively as

ηi = β0 +
J

∑
j=1

f j(νi)

38



N. Klein et al. Scale-Dependent Priors

where, in turn, each function f j(νi) is represented by a linear combination of basis functions such that
(suppressing i, j) f (ν) =∑D

d=1 βdBd(ν). Here, Bd(ν), d = 1, . . . ,D, is a set of appropriate basis functions
while β = (β1, . . . ,βD)

′ is the vector of basis coefficients to be estimated.
To enforce specific properties such as smoothness we impose multivariate normal priors

p(β|τ2) ∝ exp
(
− 1

2τ2β
′Kβ

)

with fixed positive (semi-)definite precision matrix K and variance parameter τ2 that inherits the role of
the smoothing parameter.
Suitable hyperpriors have then to be augmented to these variance components to complete the Bayesian
model specification. While the inverse gamma prior p(τ2)∼ IG(a,b) is a natural, conjugate prior, there
has been considerable debate about the suitability of the inverse gamma distribution especially in the
context of hierarchical random effects models. As a consequence, several alternatives such as half nor-
mal, half Cauchy or (proper) uniform priors for the standard deviation have been suggested as default
priors in the literature [1]. Unfortunately, prior elicitation of the hyperparameters of these priors ensuring
the propriety of the posterior and justification of the chosen distribution type with respect to axiomatic
reasoning are often quite problematic in these cases.
Without relying on a specific modelling context, [2] develop a general approach for determining so-called
penalised complexity priors reflecting that frequently hyperpriors are desired for parameters governing
the deviation of a flexible model from a restrictive base model. We utilise this approach to develop
scale-dependent priors for the variance parameters in distributional regression.

2 Scale-Dependent Hyperpriors

Omitting the distribution parameter index k as well as the effect index j we assume that f (ν) is one
generic function of ν included in a generic predictor η.
The prior distribution p(τ2|θ) for the smoothing variances τ2 constructed according to the principled
definition of priors developed in [2] is a Weibull distribution with shape parameter α = 1/2 and scale
parameter θ, i.e. p(τ2|θ) = 1

2θ(τ
2/θ)−1/2 exp

(
−(τ2/θ)1/2

)
, as derived in the following:

1. Occam’s razor. The prior invokes the principle of parsimony, i.e. a suitable base model for each effect
is preferred as long as the data provide enough evidence for a more complex modelling.
2. Measure of complexity. The increased complexity between two models is measured by the unidirec-
tional measure d(p||pb) =

√
2KLD(p||pb) where KLD(p||pb) denotes the Kullback-Leibler divergence

(KLD) between the base model represented by density pb and the alternative represented by density
p. Let N(0,τ2K−) denote the flexible model for a vector of regression coefficients and N(0,τ2

bK−) the
base model with τ2

b→ 0 and K− the generalised inverse of K. For τ2� τ2
b and τ2

b→ 0 we then obtain
KLD→ κ

2
τ2

τ2
b

and hence a distance measure d(τ2) =
√

κ
τ2

b
(τ2)1/2.

3. Constant rate penalisation. This assumption implies an exponential prior on the distance scale
pd(d) = λexp(−λd) and finally delivers the prior on the original space as

p(τ2) = λexp(−λd(τ2))

∣∣∣∣
∂d(τ2)

∂τ2

∣∣∣∣=
λ
2

√
κ
τ2

b
(τ2)1/2 exp

(
−λ
√

κ
τ2

b
(τ2)1/2

)
.

Setting θ = (λ
√

κ
τb2)

−1/2 gives the prior above which we call scale-dependent hyperprior.
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2.1 Choosing the Scale Parameter - User-Defined Scaling

The last principle controls the decay-rate exp(−λ) by imposing the condition P(g(τ2)≤ c) = 1−α for an
interpretable transformation g of τ2 and some user-defined values c and α. Compared to random effects
model mostly considered in [2] we are interested in relating the scale parameter θ to the functions f
rather than directly to the variances τ2. This is achieved by specifying a certain interval the function f
falls into with a high marginal probability

P(| f (x)| ≤ c ∀x ∈D)≥ 1−α

where α ∈ (0,1), c > 0 are chosen in advance and D is the domain of x. To solve the problem above, we
use a finite subset XP = {x1, . . . ,xP} of D together with the Bonferroni inequality to arrive at

P(| f (xp)| ≤ c ∀x ∈ XP)≥ 1−
P

∑
p=1

P(| f (xp)| ≥ c) .

The marginal density of f (xp) can be obtained by integrating τ2 out and the optimal scale parameter θ
with respect to this criterion is obtained numerically.

3 Childhood Undernutrition in Zambia

As an illustration, we use data on 4421 children in Zambia. For each child i undernutrition is measured
by a Z-score zscorei reflecting the nutritional status of child i with height hi in the population of interest.
The values m and s correspond to the mean height of children and their standard deviation in a suitable
reference population of the same age group and gender.
We assume a location-scale model, that is, the Z-scores are conditionally normally distributed with

zscorei = β0 + f1(cagei)+ f2(magei)+ f3(mbmii)+ fspat(districti)+ εi,

εi ∼ N(0,σ2
i )

log(σ2
i ) = β̃0 + f̃1(cagei)+ f̃2(magei)+ f̃3(mbmii)+ f̃spat(districti).

In the equations above, f1 to f3 ( f̃1 to f̃3) are smooth functions of the continuous covariates cage (child’s
age), mage (mother’s age at birth) and mbmi (mother’s body mass index), while fspat ( f̃spat) represents
the spatial effect that was assigned a Markov random field prior, and β0 (β̃0) is the usual overall intercept.
For all nonparametric effects, we use inverse gamma priors with default hyperparameters a = b = 0.001
and compare the results to scale-dependent priors.
Figure 1 is in accordance with the simulations and shows that the effects of mage and mbmi on the
conditional mean are estimated to be closer to a linear effect with smaller credible intervals under the
new scale-dependent prior. The spatial effect in Figure 2 is estimated similar with both hyperpriors which
is reasonable in this case since the variable district has significant impact on both distribution parameters
(based on a 95% credible interval).
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Figure 1: Comparison of estimated nonlinear effects of continuous covariates cage, mage and mbmi.
Shown are posterior means and 95% credible intervals on E(zscore) (top) and on log(σ2) (bottom).

Figure 2: Comparison of estimated spatial effects for the inverse gamma prior (left) and scale-dependent
prior (right). Shown are posterior means on E(zscore) (top) and on log(σ2) (bottom).

[2] Simpson, D. P., Rue, H., Riebler, A., Martins, T. G., Sørbye, S. H. (2017). Penalising model component
complexity: A principled, practical approach to constructing priors Statistical Science, 1, 1–28.
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Abstract. We present a wide class of spatio-temporal geostatistical stationary models arising from
spatio-temporal Stochastic Partial Differential Equations (SPDEs) interpreted in a distributional
sense. We investigate the properties of models which are stationary solutions of first order and second
order evolution SPDEs. When using a white noise as source term, remarkable properties about the
spatio-temporal symmetry and the spatial behaviour have been obtained in the case of the first order
models, and we show that these properties can be easily controlled by a suitable manipulation of the
spatial operator of the SPDE. Second order models are always symmetric, and the spatial operator of
the SPDE also determines its spatial structure. We detail important cases for these classes of models
that have physical and statistical interest. In particular, we exemplify advection-diffusion equations,
evolution of Matérn models, as well as the class of waving Matérn models which are stationary solu-
tions of the homogeneous wave equation and usual Matérn models in space. We present simulations
of these models, using algorithms based on PDE-solver, such as the finite difference method, the finite
elements method, and Fourier methods.

Keywords. Spatio-temporal Covariance Functions; Space-Time Random Fields; Spectral Measure;
Stochastic Partial Differential Equations; PDE-Solver Simulation

1 Introduction

The Stochastic Partial Differential Equation (SPDE) approach has gained increasing interest in spatial
statistics for its ability to model random fields with non-trivial properties [2] while offering very effi-
cient estimation and simulation algorithms thanks to the use of PDE-solvers algorithms, as presented for
example in [2] and [3].

In this work, we show that this approach can be made very general. It then allows to construct a large
variety of models with special properties such as non-separability and spatio-temporal asymmetry. We
present new classes of spatio-temporal geostatistical models which arise as stationary solutions for some
evolution SPDEs. We describe their properties and their spatial behaviour. This class is quite general and
can be related to a large variety of models, either already known or new. We provide examples related to
the popular Matérn Model, and we show simulations based on PDE-solvers algorithms.
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2 Evolution Models

We consider spatio-temporal stationary geostatistical models over Rd×R which are solutions of SPDEs
of the form

∂nU
∂tn +LgU = X , (1)

where n = 1,2, X is a stationary (Generalized) Random Field called the source term, and Lg is a spatial-
operator defined through the spatial symbol function g and the spatial Fourier transform and its inverse
through Lg(·) = F −1

S (gFS(·)). Under particular conditions on g and X , existence and uniqueness of
stationary solutions of (1) can be guaranteed and characterized through their spectral measure (see more
details in [1]).

As an example, the advection-diffusion equation (see [3]) is obtained for n = 1 by taking g(ξ) =
κ2 + ivT ξ+ a|ξ|2 with κ,a > 0 and v,ξ ∈ Rd . As a second example, the wave equation is obtained for
n = 2 by taking g(ξ) = c2|ξ|2 with c > 0 and ξ ∈ Rd .

2.1 First Order Evolution Models

First order evolution models correspond to n = 1 in (1). We focus on the case where X is a spatio-
temporal white noise. Under suitable conditions on g (i.e., |g| is inferiorly bounded by the reciprocal of
a strictly positive polynomial), the spectral measure of the unique stationary solution is

dµU(ξ,ω) =
1

(2π) d+1
2

dξdω
(ω+gI(ξ))2 +g2

R(ξ)
, (ξ,ω) ∈ Rd×R (2)

and its covariance structure is described through the spatial Fourier transform FS:

ρU(h,u) = FS

(
ξ 7→ 1

(2π) d
2

eiugI(ξ)−|u||gR(ξ)|

2|gR(ξ)|

)
(h), (h,u) ∈ Rd×R (3)

where gR and gI are respectively the real and imaginary part of g. The spatio-temporal asymmetry is
controlled by gI , with symmetry corresponding to gI = 0. The spatial structure is determined by gR,
which can be seen by setting u = 0 in (3). The spatial behaviour of this class of models can thus be
described through the SPDE over Rd √

2L√|gR|US =WS, (4)

where WS is a spatial white noise. As a remarkable particular case, consider gR(ξ) = (κ2 + |ξ|2) α
2 for

κ > 0, α ∈ R. In this case, the spatial marginal random fields follow a Matérn model. We therefore refer
to this class as first order evolution of Matérn models.

2.2 Second Order Evolution Models

Second order evolution models correspond to n = 2 in (1). When the source term is a spatio-temporal
white noise, under suitable conditions on g, the spectral measure of a stationary solution is of the form

dµU(ξ,ω) =
1

(2π) d+1
2

dξdω
(ω2−gR(ξ))2 +g2

I (ξ)
, (ξ,ω) ∈ Rd×R. (5)
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As this measure is temporally symmetric, we get a symmetric spatio-temporal model. The spatial struc-
ture of this model can be described through the SPDE over Rd

√
2
√

2L|g|
√
|g|−gR

US =WS (6)

When gR(ξ) =−(κ2 + |ξ|2) α
2 and gI = 0, we obtain models that are spatially Matérn. We therefore refer

to this class as second order evolution of Matérn models.

As a second example of second order evolution model, one can show [1] that stationary solutions of
the homogeneous wave equation

∂2U
∂t2 − c2∆U = 0. (7)

have a covariance structure of the form

ρU(h,u) = FS (ξ 7→ cos(c|ξ||u|)dµUS(ξ))(h), (h,u) ∈ Rd×R (8)

where µUS is the spectral measure of any arbitrarily chosen spatial stationary Random Field. For example,
when dµUS(ξ) = a(κ2 + |ξ|2)−αdξ, with a,κ > 0 and α ∈ R, we obtain a spatial Matérn covariance. The
corresponding spatio-temporal model is referred to as the waving Matérn model.

3 Simulations

Simulations of these spatio-temporal models are performed by using PDE-solver algorithms, as presented
in [2] and [3]. For the first order evolution models we apply the finite element method in space and the
finite difference method in time to obtain simulations of some examples of first order evolution of Matérn
models. For the waving Matérn model, we use spectral methods based on Fourier analysis, which are
particularly adapted in the context of Stationary Random Fields.
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Abstract. In many geoscience applications, the phenomena of interest are observed on large portion
of the Planet Earth. When such phenomena evolve over time, a valid model for the study of these
observations is to consider them as partial realization of a spatio-temporal random field, where the
spatial component is defined on a sphere, considering this last as a more realistic representation of the
globe. We Introduce a family of Gaussian random fields (GRFs) constructed by spectral methods via
a double Karhunen-Loève type representation. Based on recent result on the literature we claim that
this family represent the class of Isotropic and stationary GRFs over Sd ×R and study its regularity
properties. In particular, we consider two alternative spectral decompositions for a GRF on Sd ×R.
For each decomposition, we establish regularity properties through Sobolev and interpolation spaces.
We then propose a simulation method and study its level of accuracy in the L2 sense, which is fast and
efficient.
Then, we propose an extension of the previous results to GRF over the spherical shell (considering
altitude), and to the longitudinally isotropic case. In both situations the random field is non-stationary
in time.

Keywords. Spatio-temporal Statistics; Gaussian random fields; Karhunen-Loève expansion; Longitu-
dinally isotropic random fields; Spectral representation.

1 Introduction and main result

Spatio-temporal variability is of major importance in many fields, in particular for anthropogenic and
natural processes, such as earthquakes, geographic evolution of diseases, income distributions, mortality
fields, atmospheric pollutant concentrations, hydrological basin characterization and precipitation fields,
among others. For many natural phenomena involving, for instance, climate change and atmospheric
variables, several branches of applied sciences have been increasingly interested in the analysis of data
distributed over the whole sphere representing planet Earth and evolving through time. Besides, if we
consider the variations in altitude, it is natural to consider the data as distributed over the spherical shell.
Hence the need for random field models where the spatial location is continuously indexed through
the sphere (or the spherical shell), and where time can be either continuous or discrete. It is common
to consider the observations as a partial realization of a spatio-temporal random field which is usually
considered to be Gaussian. Thus, the dependence structure in space-time is governed by the covariance
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of a spatio-temporal Gaussian field.

Specifically, let d be a positive integer, and let Sd = {x ∈ Rd+1,‖x‖= 1} be the d-dimensional unit
sphere in the Euclidean space Rd+1, where ‖ · ‖ denotes the Euclidean norm of x ∈ Rd+1. We denote
Z = {Z(x, t), (x, t) ∈ Sd×R} a Gaussian field on Sd×R.

The research to be presented extends part of the work of [5] to space-time. Such extension is non-
trivial and depends on two alternative spectral decompositions of a Gaussian field on spheres cross time.
In particular, we propose either Hermite or classical Karhunen-Loève expansions, show how regularity
properties can evolve dynamically over time. Our main result proves that the smoothness of the covari-
ance is related to the decay of the angular power spectrum. The crux of our arguments rely on recent
advances on the characterization of covariance functions associated to Gaussian fields on spheres cross
time (see [1]) and the ideas introduced in [4].

Later, we introduce a simulation method for d = 2 which is computationally fast while keeping a
reasonable level of accuracy, resulting in a notable step forward. The method is based on a suitable
truncation of the proposed double spectral decompositions. The main result of this section is to establish
the accuracy of the method in the L2 sense, then we illustrate how the model keeps a reasonable level of
precision while being considerably fast, even when the number of spatio-temporal locations is very high.

Let Z be a random field on Sd×R defined, in the mean square sense, as

Z(x, t) =
∞

∑
j=0

dim(H d
j )

∑
m=0

X j,m,d(t)Y j,m,d(x). (1)

Here, for each j,m and d, Y j,m,d are the Spherical Harmonics basis functions, H d
j denote the linear

space of spherical harmonics of degree j over Sd , and {X j,m,d(t), t ∈ R} is a complex-valued zero-mean
stationary Gaussian process such that

cov{X j,m,d(t),X j′,m′,d(s)} := E{X j,m,d(t) X j′,m′,d(s)}
= ϕ j,d(t− s)δ j, j′δm,m′ ,

where {ϕ j,d} j∈N represents the Schoenberg’s functions associated to the covariance kernel mapping ψ
of the process Z,

ψ(x, t− s) = cov{Z(x, t),Z(y,s)}=
∞

∑
j=0

ϕ j,d(t− s)c j(d,x)dim(H d
j ), x ∈ [−1,1], (t− s) ∈ R. (2)

Here, c j(d,x) are the standardized Gegenbauer polynomials, and the series is uniformly convergent.

By applying a second Karhunen-Loève decomposition to the process Z, an alternative way to write
(1) is:

Z(x, t) =
∞

∑
j=0

dim(H d
j )

∑
m=1

∞

∑
k=0

a j,k,m,d ζk(t)Y j,m,d(x), (x, t) ∈ Sd×R. (3)

Expressions (1) or (3) represent a way to construct isotropic stationary GRFs on the sphere cross
time, and suggest a spectral simulation method, which consists in truncating the double series.
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1.1 Simulations

For d = 2, simple examples can be generated from the following space-time angular power spectrum

a j,k =
1

1+(1+ j)ν1(1+ k)ν2
, (4)

with νi > 2, for i= 1,2. We illustrate space-time realizations on S2×{1,2}, over 24000 spatial locations,
with coefficients (4), in two cases: (a) ν1 = 3 and ν2 = 5, and (b) ν1 = ν2 = 5.

Figures 1 and 2 show the corresponding realizations for cases (a) and (b), respectively. For each case,
we truncate the series (3) for d = 2 using K = J = 50. Note that the parameter ν1 is the responsible of the
spatial scale and smoothness of the realization. In [5], some realizations are illustrated using a similar
spectrum, in a merely spatial context.

Figure 1: Space-time realization on S2×{1,2}, with spectrum (4), with ν1 = 3 and ν2 = 5.

Figure 2: Space-time realization on S2×{1,2}, with spectrum (4), with ν1 = ν2 = 5.
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1.2 Extension of the results

As mentioned in the introduction, we will present partial extensions of the results introduced in [2], to
two different scenarios, both situations being non-stationary in the time variable:

i.- GRFs on the Spherical Shell cross time,

ii.- Longitudinally isotropic GRFs on the sphere cross time.

The first case is motivated by a real data-set of temperature and humidity, measured over the whole
earth from the sea level until 30000m of altitude. We have decided to consider a more realistic approach
for this kind of data, under the paradigm of spatio-temporal statistics modelling. This time, our objective
is to obtain similar results as those presented in [2], but for random fields with spatial locations over
the spherical shell Sd

r1,r2
:= {x ∈ Rd+1 : 0 ≤ r1 ≤ ‖x‖2 ≤ r2 < +∞}. This will allow to differentiate

the variations of the phenomena in longitude, latitude and altitude. Besides, thanks to recent results on
positive definite functions (see [3]), we only need to assume a condition of isotropy in latitude/longitude,
thus going beyond stationarity in time or altitude.

For the second case, the inspiration comes from several phenomena evolving over a large part of the
Earth, or all over the Earth, that have a strong correlation along the longitudes, but very weak throughout
the latitudes, in particular the cases of aerosol dynamics. This prompted us to seek an alternative to the
axially symmetric random fields as the theory for the anisotropic processes on the sphere.
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Abstract. In this work we define a spatial concordance coefficient for second-order stationary pro-
cesses. This problem has been widely addressed in a non-spatial context, but here we consider a
coefficient that for a fixed spatial lag allows one to compare two spatial sequences along a 45◦ line.
The proposed coefficient is explored for the bivariate Matérn and Wendland covariance functions.
The asymptotic normality of a sample version of the spatial concordance coefficient for an increasing
domain sampling framework is established for the Wendland covariance function. Monte Carlo simu-
lations are used to gain additional insights into the asymptotic properties for finite sample sizes. The
results will be illustrated by real data examples to see how our method works in practice.

Keywords. Concordance; Correlation; Spatial correlation function; Lin’s coefficient; Bivariate Wend-
land covariance function.

1 A Concordance Correlation Coefficient

In recent decades, concordance correlation coefficients have been developed in a variety of different con-
texts. For instance, in assay or instrument validation processes, the reproducibility of the measurements
from trial to trial is of interest. Also, when a new instrument is developed, it is relevant to evaluate
whether its performance is concordant with other, existing ones. In the literature, this concordance has
been tackled from different perspectives [1]. One way to approach this problem for continuous mea-
surements is constructing a scaled summary index that can take on values between -1 and 1. Using this
approach Lin [6] suggested a concordance correlation coefficient that evaluates the agreement between
two continuous variables by measuring the variation from a 45◦ line through the origin.

More precisely, assume that X and Y are two continuous random variables such that the joint distri-
bution of X and Y has finite second moments with means µX and µY , variances σ2

X and σ2
Y , and covariance

σY X . The mean squared deviation of D = Y −X is

MSD = ε2 = E[D2] = E[(Y −X)2].

It is straightforward to see that ε2 = (µX − µY )
2 +σ2

Y +σ2
X − 2σY X and the sample counterpart satisfies

e2 = (y− x)2 + s2
Y + s2

X −2sXY . Under the above hypothesis, Lin [6] proposed a concordance correlation
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coefficient defined as

ρc = 1− ε2

ε2|ρ = 0
=

2σY X

σ2
Y +σ2

X +(µ2
Y −µ2

X)
2 . (1)

This coefficient satisfies the following properties:

1. ρc = α ·ρ, where α = 2
w+1/w+v2 and w = σY

σX
.

2. |ρc| ≤ 1.
3. ρc = 0 if and only if ρ = 0.
4. ρc = ρ if and only if σY = σX and µY = µX .

The sample estimate of ρc is given as

ρ̂c =
2sY X

s2
Y + s2

X +(y− x)2 .

The inference for this coefficient was addressed via Fisher’s transformation. Lin [6] proved that

Z =
1
2

(
1+ ρ̂c

1− ρ̂c

)
D−→N (ψ,σ2

Z), as n→ ∞,

where ψ = tanh−1(ρc) =
1
2

(
1+ρc
1−ρc

)
, σ2

Z = 1
n−2

[
(1−ρ2)ρ2

c
(1−ρ2

c)ρ2 +
2v2(1−ρc)ρ3

c
(1−ρ2

c)
2ρ + v4ρ4

c
2(1−ρ2

c)
2ρ2

]
, and v2 = (µY−µX )

2

σY σX
. As

a consequence of the asymptotic normality of the sample concordance index, an approximate hypothesis
testing problem of the form H0 : ρc = ρ0 versus H1 : ρc 6= ρ0 for a fixed ρ0 can be constructed.

Applications and extensions of Lin’s coefficient can be found in [5], [7], and [8], among others.

2 A Spatial Concordance Coefficient and its Properties

Here, we extend Lin’s coefficient for bivariate second-order spatial processes for a fixed lag in space.

Definition 1. Let (X(s),Y (s))> be a bivariate second-order stationary random field with s ∈ R2, mean
(µ1,µ2)

>, and covariance function

C(h) =

(
CX(h) CXY (h)
CY X(h) CY (h)

)
.

Then the spatial concordance coefficient is defined as

ρc(h) =
E[(Y (s+h)−X(s))2]

E[(Y (s+h)−X(s))2|CXY (0) = 0]
=

2CY X(h)

CX(0)+CY (0)+(µ1−µ2)2 . (2)

Some straightforward features of this coefficient are the following:

1. ρc(h) = η ·ρY X(h), where η =
2
√

CX (0)CY (0)

CX (0)+CY (0)+(µ1−µ2)2 .

2. |ρc(h)| ≤ 1.
3. ρc(h) = 0 iff ρY X(h) = 0.
4. ρc(h) = ρY X(h) iff µ1 = µ2 and CX(0) =CY (0).

METMA IX Workshop 2

50



R. Vallejos et al. Spatial Concordance Coefficient

5. For a bivarite Matérn covariance function defined as CX (h) = σ2
1M(h,ν1,a1), CY (h) = σ2

2M(h,ν2,a2),
µ1 = µ2, CY X (h,ν12,a12) = ρ12σ1σ2M(h,ν12,a12), where M(h,ν,a) = (a||h||)νKν(a||h||), and Kν(·) is a
modified Bessel function of the second type and ρ12 = cor[X(si),Y (s j)] we have that

ρc(h) =
2σ1σ2M(h,ν12,a12)

σ2
1 +σ2

2
= η ·ρ12,

where η = 2σ1σ2M(h,ν12,a12)

σ2
1+σ2

2
.

6. For a bivariate Wendland-Gneiting covariance function [3] of the form

C(h) = [ρi jσiiσ j jRi j(h)]
2
i, j=1 ,

where R(h,ψ12) = ci jbν+2k+1
i j B(ν+2k+1,γi j +1)ψ̃ν+γi j+1,k

(‖h‖
bi j

)
, B(·, ·) is the beta function,

and ψ̃ν,k is defined in [4], the spatial concordance coefficient is

ρc(h) =
2ρ12σ1σ2R(h,ψ12)

σ2
1 +σ2

2 +(µ1−µ2)2
, h ∈ R2, (3)

In particular, considering Ri j(h) = pk(‖h‖)(1−‖h‖/bi j)
l
+, where k = 2, l = v+1, and bi j > 0,

ρc(h) =
2ρ12σ1σ2 (1+ l‖h‖/b12)(1−‖h‖b12)

l
+

σ2
1 +σ2

2 +(µ1−µ2)
.

3 Inference

In the previous section we proved that for several covariance structures, the spatial concordance coeffi-
cient defined in (2) can be written as a product of the correlation coefficient and a constant. Thus, we can
consider a plug-in estimator for these two quantities.

Let (Z1(s),Z2(s))
> s ∈ D be a Gaussian process with mean µ = (µ1,µ2)

> and covariance function
C(h), s,h ∈ R2. Then a sample estimate of the concordance index (2) is

ρ̂c(h) = ρ̂12(h)Ĉab, (4)

where Ĉab = ((â+1/â+ b̂2)/2)−1, â =

(
Ĉ11(0)

Ĉ22(0)

)1/2

, b̂ =
µ̂1− µ̂2

(Ĉ11(0)Ĉ22(0))1/4
and µ̂1, µ̂2, Ĉ11(0) and

Ĉ22(0), are the maximum likelihood (ML) estimates of µ1, µ2, C11(0) and C22(0), respectively.

The asymptotic properties of an estimator as in (4) have been studied in the literature for specific
cases. Moreno et al. [2] studied the asymptotic properties of the ML estimator for a separable Matérn
covariance model. They used a result provided by Mardia and Marshall [9] in an increasing domain
sampling framework. Using this result and the delta method we can establish the following result for the
Wendland-Gneiting model.

Theorem 1. Let (Z1(s),Z2(s))
>, s ∈ D be a bivariate Gaussian spatial process with mean 0 and covari-

ance function given by

C(h) =

[
ρi jσiiσ j j

(
1+(ν+1)

‖h‖
b12

)(
1− ‖h‖

b12

)ν+1

+

]2

i, j=1

,
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for ν > 0 fixed. Define θ = (σ2
1,σ2

2,ρ12,b12)
> and denote θ̂n the ML estimator of θ. Then

(
∇g(θ)>Fn(θ)

−1∇g(θ)
)−1/2

(g(θ̂n)−g(θ)) D−→N (0,1), as n→ ∞,

where g(θ) =
2ρ12σ1σ2

(
1+(ν+1)

‖h‖
b12

)(
1− ‖h‖

b12

)ν+1

+

σ2
1 +σ2

2
, and Fn(θ) is the Fisher information matrix

associated with θ̂.

In addition, we also provide an expression for the asymptotic variance of the spatial concordance
coefficient.

4 Applications

We explore the properties of the spatial concordance coefficient ρc for finite samples sizes through Monte
Carlo simulations. Misspecification of the covariance function will also be addressed to inspect the
impact on estimations when assuming a misspecified covariance function for the processes.

An application with real data also will be analyzed. Two images taken from the same location
will be compared using the spatial concordance coefficient for different spatial lags. This measure of
concordance is applied to digital images of forest-tree spring leaf-out obtained by different cameras. The
result measures the agreement between two different acquisition processes. A concordance map similar
to a codispersion map can be built to explore (an)isotropy in spatial concordance.
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Abstract. Space-time data, even spatial data sometimes, are big. Thus, it is difficult to handle them
by methods that scale poorly with size. The main roadblock in the application of geostatistical and
machine learning methods (Gaussian processes) is the storage of dense covariance matrices and the
O(N3) scaling of the numerical inversion of dense covariance matrices. Efficient representations of
spatial or space-time correlations can be constructed using local dependence models, in the spirit of
Gaussian Markov random fields (GMRFs). In the case of continuum random fields, the Gaussian field
theories of statistical physics provide models with local structure. Stochastic local interaction (SLI)
models are inspired both from GMRFs and Gaussian field theory. The main idea is that the correlations
are generated by interactions between neighboring sites and times. The interactions are incorporated
in a precision matrix with simple parametric dependence. The strength of the interactions and the
size of the neighborhood are defined by means of kernel functions and respective bandwidths. Com-
pactly supported kernels lead to finite-size local neighborhoods. This representation leads to sparse
precision matrices. In addition, the precision matrix is explicitly constructed at the model estimation
stage, which means that optimal prediction does not require the costly matrix inversion. Consequently,
computational implementations require less memory space and run faster than traditional approaches.
In the case of lattice data, SLI models transform into GMRFs. We present a specific SLI formulation
and consider its application to lattice and scattered data.

Keywords. Spatial and spatio-temporal covariance modelling; Spatial/spatio-temporal lattice data

1 Introduction

Space-time (ST) data are becoming available in overwhelming volumes and diverse forms due to the
continuing growth of remote-sensing capabilities, the deployment of low-cost, ground-based sensor net-
works, as well as the increasing usage of sensors based on unmanned aerial vehicles, and crowdsourcing.
The ongoing data explosion is expected to have an impact in various fields of science and engineering.
The modeling and processing of massive datasets poses conceptual, methodological, and technical chal-
lenges. Sufficiently flexible and computationally powerful solutions that explicitly exploit ST structure
are not widely available to date, because most existing methods are not designed for global, high-volume,
hyper-dimensional, heterogeneous and uncertain ST data. For example, classical geostatistical and ma-
chine learning methods [1, 9] are limited by the cubic dependence of computational time on data size,
which is prohibitive for large spatial data, even if time is omitted.

The modeling and processing of ST data are more complicated and computationally demanding than
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purely spatial data. For example, theories that simply extend spatial statistics by adding a separable
time dimension [2, 3] are often inadequate for capturing realistic correlations and for analyzing massive
ST data. Current methods, whether they are based on geostatistics [1], spatio-temporal statistics [3], or
machine learning [9] face serious scalability problems. A prevailing obstacle is the computationally de-
manding iterated inversion of large covariance (Gram) matrices [9, 11]. Hence, classical methods run on
typical desktop computers are limited to datasets with size N ∼ O(103)−O(104). Approaches for alle-
viating the dimensionality problem (covariance tapering, composite likelihood, low-rank computations,
stochastic partial differential equation representation) have been proposed and developed [11].

We present herein a framework for ST problems that is based on stochastic local interaction (SLI)
models [4, 5]. For example, this formulation could be useful for filling gaps in ST records of meteo-
rological variables that are needed for evaluation of renewable energy potential at candidate sites [6].
The main idea is that the correlations are determined by means of sparse precision matrices that only
involve couplings between neighbors (in the ST domain). This idea of local dependence is underlying
Markov random fields [10] and statistical field theories [7]. However, the former Markov random fields
are typically used for regular lattice data while field theories are continuum models. SLI models extend
the idea of locality to potentially scattered ST data.

2 ST Model based on Stochastic Local Interactions

A space-time random field (STRF) X(s, t;ω) ∈R where s, t ∈Rd×R and ω ∈Ω is defined as a mapping
from the probability space (Ω,A,P) into the space of real numbers R. For each ST coordinate (s, t),
X(s, t;ω) is a measurable function of ω [2], where ω is the state index. The states (realizations) of the
random field X(s, t;ω) are functions x(s, t) obtained for a specific ω.

We will consider STRFs with joint pdf defined by the Boltzmann-Gibbs exponential distribution

fx[x(s, t)] =
e−H [x(s,t)]

Z
, (1)

where H [x(s, t)] is an energy function and Z is the normalizing factor known as partition function. Herein
we will assume that the following properties are satisfied by H [x(s, t)] for any vector x = (x1, . . . ,xN)

>,
where N ∈ N which comprises the field values at the ST point set {(s1, t1) . . .(sN , tN)}:

• H [x] is a quadratic function that can be expressed as

H [x] =
1
2
(x−mx)

>J(x−mx). (2)

• H [x]> 0 for all x that are not identically equal to zero. This is equivalent to the precision matrix
J being a positive-definite matrix.

• The precision matrix J is a sparse matrix that embodies the local interactions.

More precisely, we are going to be concerned with the following SLI energy function

H [x;θ] =
1

2λ

[
N

∑
n=1

1
N
(xn−mx)

2 + c1
〈
(xn− xk)

2 〉
]
, (3)
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where θ is the SLI parameter vector that includes the parameters mx (mean value), λ (overall scale
parameter proportional to the variance), and c1 (dimensionless factor that determines the contribution
from the squares of the increments xn− xm). The vector θ includes additional parameters that determine
the local ST neighborhood in the average 〈·〉. The latter is defined by means of the Nadaraya-Watson
average [8, 12], i.e.,

〈(xn− xk)
2〉= ∑N

n=1 ∑N
k=1 wn,k (xn− xk)

2

∑N
n=1 ∑N

k=1 wn,k
. (4)

The weights wn,k are determined by means of compactly supported kernel functions K(·). Kernel
functions are symmetric, K(x) = K(−x), functions that take values in [0,1]. The argument on the kernel
functions depends on the local neighborhood structure.

1. For example, we can use a separable space-time neighborhood so that wn,k =K(rn,k)K(τn,k) where
rn,k = (sn− sk)/hn is the non-dimensional spatial lag between the initial point sn and the target
point sk, and τn,k = (tn− tk)/αn is the non-dimensional temporal lag between the initial and target
times respectively. The spatial bandwidths hn and the temporal bandwidths αn are determined
based on the geometry of the sampling network around the initial ST point (sn, tn). Note that this
implies asymmetric weights, i.e, in general wn,k 6= wk,n.

2. Composite space-time metric:

J =
1
λ

{
IN

N
+ c1 J1(h)

}
, (5)

where IN is the N×N identity matrix: [IN ]i, j = 1 if i = j and [IN ]i, j = 0 otherwise. The matrix J(h) is
determined by the sampling pattern, the kernel function, and the bandwidths according to

[J(h)]i, j =−ui, j−u j,i +[IN ]i, j
N

∑
l=1

[ui,l +ul,i] , (6)

ui, j =
K
(

si−s j
hi

)

∑N
i=1 ∑N

j=1 K
(

si−s j
hi

) , where i, j = 1, . . . ,N. (7)

3 Conclusions

We have presented a framework for the construction of ST models that are based on the idea of local
interactions. The model is based on exponential Boltzmann-Gibbs joint probability density functions.
The local interactions in the above model are implemented by means of compactly supported kernel
functions that compensate for the lack of a structured lattice. The model proposed herein represents
Gaussian random fields with sparse precision matrices. Explicit expressions are given for ST prediction
and for the estimation of the conditional variance. The sparse precision matrix representation leads to
computational efficiency.
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The formulation presented can be extended to multivariate random fields and to different local in-
teraction models. In addition, it is possible to include anisotropic spatial distance metrics in the kernel
functions, periodicity (in space and in time) by adding shifted averaged squared increments, and non-
stationarity by allowing spatially dependent coefficients λ and c1. These extensions will add flexibility
to the model but reduce somewhat its computational efficiency.
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Abstract. Numerical weather prediction (NWP) models predict future weather by approximating so-
lutions to the (deterministic) partial differential equations that govern the dynamics in atmosphere
and oceans. These models oftentimes exhibit bias and miscalibration and therefore require statistical
post-processing based on training data.
We consider NWP forecasts for sea surface temperature on the entire globe issued by the Norwegian
Climate Prediction Model NorCPM. Challenges for statistical post-processing of sea surface temper-
ature are, among others, strong seasonality effects, trends in the bias caused by global warming, and
a non-stationary spatial error correlation. Moreover, as we consider a fine grid spanning the entire
globe, the dimension of the forecast variable is much higher than the sample size. In order to over-
come these issues we apply principal component analysis to regularize the covariance matrix of the
forecasting distribution.

Keywords. Computational statistics; Geostatistics; Spatial and spatio-temporal covariance modelling;
Weather and climate.

1 Introduction

Numerical weather prediction (NWP) models are state of the art in modern meteorological forecasting.
They rely on partial differential equations that describe the physics of the atmosphere and the oceans.
Approximating a solution to these equations is used to obtain a prediction of the future weather from
current observations. However, observations are not everywhere available and often imperfect and there
are interactions in the atmosphere and oceans that are too complicated to model. As a consequence,
even though they are very successful in capturing the dynamics of weather phenomena, NWP models are
known to exhibit bias and misspecify forecast uncertainty and require statistical post-processing.

The goal of statistical post-processing is to correct a forecast model by observing the performance of
the model over a training period, for which both observations and forecasts are available. Given a suffi-
cient amount of training data, systematic errors of the forecast model can be found and then corrected,
leading to a better forecast. It has been argued by [?] that ‘the goal of probabilistic forecasting is to
maximize the sharpness of the predictive distributions subject to calibration’. A forecast is calibrated if
the observations look like random draws from the forecasting distribution, whereas a sharper forecasting
distribution has a lower spread and is therefore more informative.
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Figure 1: The left hand side plot shows the observed monthly mean sea SST for February 2005. The
right hand side plot shows one member of the ensemble forecast for the same month that was issued in
January 2005.

We consider monthly mean sea surface temperature (SST) predictions issued by the NWP model
NorCPM (Norwegian Climate Prediction Model). The post-processing of the forecasts is divided into
two steps, both of which together ensure that the forecast is calibrated and sharp: Bias correction and
covariance modelling. Especially covariance modelling is challenging on a global scale, as the forecast
error covariance is not stationary or isotropic in space, which is often a standard assumption in post-
processing approaches of spatial phenomena. We rely on principal component analysis (PCA) to model
the spatial covariance and demonstrate its favorable performance compared to other post-processing
techniques. To the best of our knowledge, applying PCA in the context of statistical post-processing of
forecasts is a novel approach.

2 A Model for the Forecast Residuals

The dataset available to us contains forecasts and observations of monthly mean SST on a grid with
approximately 42,000 grid points spanning the entire globe for the years 1985–2010. The NorCPM
issues a forecast ensemble with 9 members with new forecast runs being started every three months,
consequently the lead time of the forecast is between one and three months. We use the years 1985-
2000 as training data set and validate our methods on the years 2001-2010. Figure ?? shows an example
for observed sea surface temperature and a member of the corresponding forecast ensemble. In this
example, which is quite typical, the forecast is overall colder and has smoother spatial structures than the
observation. Corresponding to these issues, our post-processing procedure is divided into two steps. First
we estimate the bias of the forecast and correct for it. Then, we add noise to the bias corrected forecast
that represents our forecast uncertainty and corrects the spatial covariance structure of the forecast. We
follow the idea of nonhomogeneous Gaussian regression introduced by [?] in that we assume a Gaussian
model for the residuals

resy,m,s,k := Ey,m,s,k−SSTy,m,s,
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Figure 2: Example forecast residuals for September.

where SST denotes observed sea surface temperature and E denotes the ensemble forecast issued by
NorCPM. The indices y,m,s and k represent the year, month, spatial location, and the ensemble member,
respectively. Both the bias of the raw forecast ensemble and the forecast uncertainty depend strongly on
the month of the year and the location. Thus, we model the marginal distribution of the residuals as

resy,m,s,k ∼N (bm,s,σ2
m,s),

where bm,s and σ2
m,s denote the bias and marginal variance for month m and location s. Both can be

estimated from past data in a straightforward manner, for example by moving averages over past residuals
(squared residuals) for the respective month and location. The main challenge lies in finding a good
approximation of the spatial covariance structure,

resy,m,k−bm ∼NS(0,Σm),

where the vectors on the left hand side are S-dimensional, S being the number of grid points in our spatial
grid.

3 Covariance Estimation

In Figure ?? we show two typical residuals for the month of September. They indicate that, additionally
to positive correlation among grid points that are spatially close, we need to take into account covariance
effects that correspond to ocean currents and other area effects such as islands and coastal regions. These
effects are difficult to model explicitly and imply a non-stationary and anisotropic spatial covariance.
Moreover, the grid size S ≈ 42,000 is too large to use the full sample covariance matrix to estimate
the covariance matrix Σm. Therefore, we apply principal component analysis in order to regularize the
sample covariance matrix and reduce dimension. More precisely, we consider the sample covariance
matrix

Σ̂m =
1

KY −1 ∑
k,y

resy,m,kresT
y,m,k,
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Figure 3: The first two principal components
√

λ1v1 and
√

λ1v2 for September.

where K is the ensemble size and Y is the number of years. Computing its eigenvalue decomposition

Σ̂m =
KY

∑
i=1

λivivT
i ,

where λ1 > ... > λKY denote the eigenvectors of Σ̂m and vi are orthonormal eigenvectors, we then estimate
the covariance matrix as

Σ̂m(d) :=
d

∑
i=1

λivivT
i ,

where the cutoff level d � KY is a tuning parameter for our estimate. Figure ?? shows the first two
(scaled) eigenvectors

√
λ1v1 and

√
λ1v2 for the month of September, given visual evidence that the PCA

is able to uncover much of the covariance structure that seems to be present in Figure ??.

We underline this first impression by applying thorough checks for calibration and comparing our
method to other competing methods, such as ensemble copula coupling and geostationary models. The
superior performance of the principal component method along with its high interpretability and the
dimension reduction, which allows for fast sampling from the forecasting distribution, lets us believe
that PCA has a wide potential in post-processing of high dimensional forecasts.
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Abstract. In this contribution, a geostatistically sound approach inspired by a soil simulation strategy
known as the “pilot point” technique is proposed to simulate heterogeneous spatial fields respecting
average values known over large scale domains. It typically allows the disaggregation of atmospheric
reanalysis, GCMs outputs or large scale stochastic weather simulations. The disaggregation is based
on an “a priori” small-scale simulation over the final grid, conducted as in [4]. The two main compo-
nents of this “a priori” simulation are a first Gaussian field thresholded to get a 0/1 rainfall indicator
field and a second Gaussian field to get a non-zero rainfall field, the non-zero rainfall field is then
multiplied by the indicator field. The novelty is that the Gaussian fields are iteratively modified so that
the final simulation will reach the wished large-scale values. The disaggregation is not deterministic
and reintroduces small-scale variability implicit in the large-scale data, giving an instrumental picture
of the conditional uncertainty. The technique was developed within a stochastic weather simulation
project led by Sintef; it is presently tested under Norwegian and French climates.

Keywords. Geostatistics; Weather and Climate.

1 Introduction

In hydrology and renewable energy projects, one may need to disaggregate values available as large scale
simulation (LS-values). A typical case is the one of rainfall quantities. There is not one only solution to
this question: a conditional variability in the fine grid is natural and should be generated by the disaggre-
gation technique. Our contribution describes a technique to disaggregate precipitation quantities known
on control domains into cells of a fine grid, trying to keep a realistic distribution supposedly known at the
small scale in terms of local marginal and spatio-temporal structure. The technique then build ensem-
bles where all members are equally probable under the assumptions. By design, the technique strictly
respects the values given at LS. Any possible errors in the large-scale input values must be cleaned up
before disaggregation.
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2 Method

2.1 Inspiration

The technique is inspired by the solution for solving inverse problems in hydrogeology given by [2]
under the name of “pilot points approach”. Their motivation was aquifer reconstruction given observed
macro-scale properties. Adding arbitrary control points with adjustable values, [2] were able to tune the
aquifer as wished. Here control values are defined on the LS-domains, not on points, hence "pilot values
approach" naming is more relevant in our case.

2.2 Algorithm

Two steps are achieved in the disaggregation method. First a small-scale intermittency field is generated
and needs to be adjusted to respect the LS value. Second a small-scale non-zero rainfall field is generated
and multiplied by the intermittency field (to delineate actually rainy areas). The final composite needs to
respect the LS non-zero precipitation value.

More precisely, the intermittency simulation step is as follows and will be latter illustrated in the
next section: 1/ generate a Gaussian field for the small-scale grid having the expected spatio-temporal
structure suitable for thresholding-based simulation of intermittency; 2/ check how the thresholded field
compares with the expected large-scale wetness values; 3/ where the recovered wetness is too much,
gently lower the Gaussian field ; where the recovered wetness is not enough, gently higher the Gaussian
field. Adjust as necessary to recover every prescribed large-scale wetness value.

Then, the non-zero rainfall step is presented as follows: 1/ generate a Gaussian field for the small-
scale grid having the spatio-temporal structure suitable for anamorphosis-based simulation of non-zero
rainfall; 2/ check how the anamorphosed field compares with the expected large-scale rainfall values
(keep only the average on wet cells); 3/ where the recovered precipitation amount is too much, gently
lower the Gaussian field; where the recovered precipitation amount is not enough, gently higher the
Gaussian field. Adjust as necessary to recover every prescribed large-scale wetness value.

How to “gently change” a Gaussian field ?
The idea is to choose one scalar shift value per control zone (LS cell); using block-to-point kriging [3],
these shifts are distributed (interpolated) to the small-scale grid and this distributed shift is added to the
Gaussian grid. (A warning : what is easily found about block kriging usually refers to point-to-block
kriging, where the kriging matrix is between data points and the target is a domain of finite non point
size, so a block. Here we really mean block-to-points kriging, where the kriging matrix is build on block
covariance between data blocks and the right vector is covariance between data blocks and target point.
As the kriging variance is not needed, we recommend to use dual kriging [6].

How to respect the exact values of large scale ?
The previous paragraph has explained briefly how we “gently change ” a Gaussian field, so that the bloc
in the Gaussian field will respect the given value over the large scale blocs. But because of the non-
linear transformation to the user field (intermittency) it is not obvious how to choose the bloc values to
condition the underlying Gaussian field. The dichotomy method is a root-finding method that repeatedly
bisects an interval and then selects a sub-interval in which a root must lie for further processing [1, 2]. In
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our context, the dichotomy method will allow each control zone of an arbitrary Gaussian field to come
close to prescribed large-scale value by gently changing the Gaussian field in each iteration, until the
large-scale values are respected for all control zones.

The suggested technique makes a nice job in control runs. To achieve acceptable performance, a
careful planification of the basic spatio-temporal integrals involved is recommended. We are aware that
a link between intermittency and non-zero rainfall values [5] may exist. In our case, it can be present in
the large scale values, then it will respected. It is left for further studies to possibly introduce it in the
disaggregation also.

3 Application: the Cévennes-Vivarais region, France

Figure 1 presents the control zones (LS cells) delineation and the small-scale 2km resolution grid. The
LS cells (i.e. the homogeneous rainfall zone) are described by the two known values, the average daily
precipitation (i.e. average rain over the whole LS cell) and the daily rainfall intermittency (i.e. fraction
of grid cells in the LS cell presenting a non-zero rain). As an illustration, Table 1 presents 3 continuous
daily simulated values, obtained with the copula based parametric model that are used as input in the
disaggregation model. Figure 2 presents the simulation steps of the proposed disaggregation technique
for an illustrative sequence of 3 successive days.

4 Tables and figures
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Figure 1: Gridded Cévennes-Vivarais region. Large-scale control domain (blue lines) and small-scale
regular grid (black squares) at 2 km resolution.

t P1 I1 P2 I2 P3 I3 P4 I4

t1 2.4 0.6 3.5 0.4 1.5 0.8 5.5 0.8
t2 0 0 3.7 0.9 0.8 0.4 4.5 0.9
t3 0.3 0.3 0.7 0.1 0.1 0.2 1.5 0.7

Table 1: values to be respected for average precipitation (P) and the rainfall intermittency (I), for 3
successive days, in the 4 homogeneous zones.
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Figure 2: The simulation steps ; all fields are spatio-temporal (3 days, 4 zones) a) Gaussian field for
intermittency simulation. b) Interpolated pilot values, to be added to the previous c) Sum of the two
previous, to be tresholded for intermittency simulation d) Final simulated intermittency. d) Gaussian
field for non-zero rainfall simulation f) Interpolated pilot values to be added to the previous g) The
sum of the previous, to enter anamorphosis towards the user distribution h) Non-zero rainfall field to be
intersected with intermittency i) Final rainfall field.

References

[1] Certes, C., and G. de Marsily (1991), Application of the pilot point method to the identification of aquifer
transmissivities. Advances in Water Resources 14(5), 284–300.

[2] de Marsily, G., J.-P. Delhomme, F. Delay, and A. Buoro (1999), Regards sur 40 ans de problèmes inverses en
hydrogéologie. Comptes Rendus de l’Académie des Sciences-Series II A-Earth and Planetary Science 329(2),
73–87.

[3] Kerry, R., P. Goovaerts, B. G. Rawlins, and B. P. Marchant (2012), Disaggregation of legacy soil data using
area to point kriging for mapping soil organic carbon at the regional scale. Geoderma 170(Supplement C),
347–358.

[4] Leblois, E., and J.-D. Creutin (2013), Space-time simulation of intermittent rainfall with prescribed advection
field: Adaptation of the turning band method, Water Resources Research 49(6), 3375–3387.

[5] Schleiss, M., Chamon, S. and Berne, A. (2014), Stochastic simulation of intermittent rainfall using the con-
cept of “dry drift”. Water Resources Research 50, 2329–2349.

[6] Royer, J.-J., and P. Vieira (1984), Dual formalism of kriging. Geostatistics for natural resources characteri-
zation 2, 691–702.

METMA IX Workshop 4

64



Two-Scale Spatial Models for Binary Data

C. Hardouin1,∗ and N. Cressie2

1 MODAL’X, Université Paris Nanterre, France; hardouin@parisnanterre.fr
2 NIASRA, University of Wollongong, Australia; ncressie@uow.edu.au
∗Corresponding author

Abstract. A spatial lattice model for binary data is constructed from two spatial scales linked through
conditional probabilities. A coarse grid of lattice locations is specified and all remaining locations
(which we call the background) capture fine-scale spatial dependence. Binary data on the coarse grid
are modelled with an autologistic distribution, conditional on the binary process on the background.
The background behaviour is captured through a hidden Gaussian process after a logit transformation
on its Bernoulli success probabilities. The parameters of the new model come from both spatial scales,
and are estimated with likelihood-based methods. We introduce the Spatial odds-ratio, which is more
appropriate in the binary context than the spatial correlation. Presence-absence data of corn borers
in the roots of corn plants are used to illustrate how the model is fitted.

Keywords. Gaussian process; Auto-logistic model; Spatial odds-ratio; Laplace approximation.

1 Introduction

Binary spatial data are involved in various domains. One common model for regularly spaced binary data
is the auto-logistic model, which belongs to Besag’s auto-models class ([1]). In a hierarchical framework,
a Generalized Linear Model ([4], [5]) can be implemented with a link appropriate for binary data. The
logit link is canonical and a natural choice for the hidden process is Gaussian. In this work, we focus
on binary data on a spatial lattice with two spatial scales. For the sake of simplicity, we assume that the
process is observed on a regular lattice D = {s1,s2, ...,sn} ⊂ R2. Let Z =(Z(s) : s ∈ D)T be the process
on D, taking its values in the state space E = {0,1}D.

We consider two scales of spatial dependence, which occur locally at fine-scale resolution 1, and at
a coarse-scale resolution ∆ > 1. This distance ∆ is assumed known; in practice, it may be obtained from
a preliminary exploratory analysis of the data, or by subject matter experts. We then specify a coarse
regular grid of sites at resolution ∆; the locations on the coarse grid define what we call the Grid, and all
remaining locations on the underlying lattice define what we call the Background.

The spatial-process modelling is the following. We write Z = (ZT
G,Z

T
B). Then we start with the

Background, which involves a conditional logistic model for ZB; then, conditional on ZB, we define ZG

on the Grid.
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2 Two-scale spatial modelling

2.1 Fine-scale process on the Background

We model the binary variables using a Bernoulli distribution, where the mean depends on an underly-
ing zero-mean Gaussian spatial process ε with covariance matrix Σ. Moreover, we assume conditional
independence of the Bernoulli random variables given ε. Thus we consider,

ZB(s) | ε(s)∼ Ber(p(s)), (1)

wherep(s) =
eε(s)

1+ eε(s) .

2.2 Coarse-scale process on the Grid

We define the model on the Grid conditional on the Background using a Markov Random Field model
with a neighborhood graph on the Grid, which recall has resolution ∆. For the sake of simplicity we
consider here the four nearest neighbours, but the model can be modified easily to account for extra
spatial dependence.

For each site s∈G, we define the four-nearest-neighbourhood set NG(s)= {u∈G : u= s±(∆,0),s±
(0,∆)}. Our conditional model for the Grid values is:

πs(ZG(s) | ZB,ZNG(s)) =

exp

{
αB(s)ZG(s)+ β

4 ∑
u∈NG(s)

ZG(s)ZG(u)

}

1+ exp

{
β
4 ∑

u∈NG(s)
ZG(s)ZG(u)

} , (2)

Here, β is the spatial interaction parameter, which we assume to be constant over the Grid; αB(s)
captures the dependence on ZB, with

αB(s) = γ+α× ∑u∈NB(s) ZB(u)
|NB(s)|

,

where NB(s) = {u = (u1,u2) ∈ B : |u1− s1| ≤ ∆, |u2− s2| ≤ ∆} is the set of the neighbour Background

locations. We ultimately choose γ =−α+β
2

.

3 Simulation experiments

We show through simulations that the two-scale spatial model presented before allows both competitive
or cooperative behaviours as well. Further, we introduce the spatial odds ratio, which accounts for
dependence better than the spatial correlation when the data are binary.
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4 Estimation

The joint distribution of the process is the product of two terms, corresponding to the distribution on the
Grid given the Background, times the distribution on the Background. Due to the intractable normaliz-
ing constant, the auto-model parameters are estimated by maximizing the pseudo-likelihood introduced
by Besag [2]. The second term involves the latent Gaussian field’s parameters; their estimation in a
hierarchical statistical model typically requires an EM algorithm; see [3] or [7]. The E-step needs the
expectation of the latent field ε given the observations, but we do not know the integrated distribution.
Here we use Laplace approximations to approximate the intractable integrals.

5 Application to Corn Borers dataset

An extensive entomological field study of European corn borer larvae was conducted in northwest Iowa
([6]). We consider a square area divided into 324 regular subplots, on 18 rows, planted with corn seeds.
The response variables analyzed were defined as binary variables for the subplots, where the value 0
was obtained if corn borer larvae were absent, and the value 1 was obtained if one or more larvae were
present. First, the resolution ∆ of the Grid, and the location of the Grid, are chosen according to a
preliminary exploratory step, by inspecting the spatial odds ratio at different lags. Then, we estimate the
parameters of the model.
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Abstract. Conditionally specified Gaussian Markov random field (GMRF) models with adjacency-
based neighborhood weight matrix, commonly known as neighborhood-based GMRF models, have
been the mainstream approach to spatial smoothing in Bayesian disease mapping. However, there are
cases when there is no evidence of positive spatial correlation or the appropriate mix between local
and global smoothing is not constant across the region being study. Two models have been proposed
for those cases, a conditionally specified Gaussian random field (GRF) model using a similarity-based
non-spatial weight matrix to facilitate non-spatial smoothing in Bayesian disease mapping, and a
spatially adaptive conditional autoregressive prior model. The former model, named similarity-based
GRF, is motivated for modeling disease mapping data in situations where the underlying small area
relative risks and the associated determinant factors do not varying systematically in space, and the
similarity is defined by similarity with respect to the associated disease determinant factors. In the
presence of disease data with no evidence of positive spatial correlation, a simulation study showed a
consistent gain in efficiency from the similarity-based GRF, compared with the adjacency-based GMRF
with the determinant risk factors as covariate. The latter model considers a spatially adaptive extension
of Leroux et al. [9] prior to reflect the fact that the appropriate mix between local and global smoothing
may not be constant across the region being studied. Local smoothing will not be indicated when an
area is disparate from its neighbours (e.g. in terms of social or environmental risk factors for the health
outcome being considered). The prior for varying spatial correlation parameters may be based on a
regression structure which includes possible observed sources of disparity between neighbours. We
will compare the results of the two models.

Keywords. Bayesian modelling. Disease mapping. Small area.

1 Introduction

Spatial disease mapping models are being extensively used to describe geographical patterns of mortality
and morbidity rates. Information provided by these models is considered invaluable by health researchers
and policy-makers as it allows, for example, to effectively allocate funds in high risk areas, and/or to plan
for localised prevention/intervention programmes.

In cases of rare diseases and/or low populated areas, the classical estimators of the morbidity rates
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show high variability, and spatial disease mapping models overcome that by borrowing strength from
spatial neighbours. One rationale is that the spatial random effects used to implement such borrowing of
strength are proxies for unobserved risk factors that vary smoothly in space. Models used in disease map-
ping are usually generalized linear mixed models (GLMM) formulated within a hierarchical Bayesian
framework, and Poisson likelihood is often assumed for data in the form of counts of cases for each areal
unit. Neighbourhood information is explicitly incorporated into the model by means of an appropriate
prior specification. The seminal work of Besag et al. [3] provides a pair of area-specific random effects
to model unstructured heterogeneity (extra-Poisson variation) and spatial similarity. The Besag-York-
Mollié (BYM) model is an extension of the intrinsic conditional autocorrelation (CAR) model, a well
known Gaussian Markov random field (GMRF) prior in disease mapping [3]. In the same field, Leroux
et al. [9] proposed a conditional autoregressive prior incorporating a spatial correlation parameter, with
its extreme values corresponding to pure spatial and pure unstructured residual variation. One important
aspect of the CAR modelling is the definition of the so-called neighbourhood matrix, which characterizes
the spatial structure of the data at hand, and is based on the concept of neighbours.

The debate on the definition of neighbours can be traced back to Besag [2]. Others have worked
in defining neighbours in several different ways (Besag et al. [3], Best et al. [4], Earnest et al. [6],
Congdon [5] and Lee and Mitchell [8]).

Most of the research in disease mapping is related with diseases resulting from environmental ex-
posures, such as respiratory complications and cancer. Those extrinsic disease determinant factors are
spatially smoothed, and using some kind of spatial proximity, either by adjacency or by distance, be-
tween areas in the definition of neighbours has therefore provided good results. In cases in which no
spatial positive autocorrelation is displayed by the data, the neighbourhood matrix as it exists today
may not be adequate. The similarity-based GRF approach, proposed by Baptista et al. [1], replaces the
neighbourhood-based GMRF approach. The structure of the conditionals is maintained, but the smooth-
ing and borrowing strength mechanisms are now based on the similarity of the areas, regardless of their
relative location in space.

Another approach to the same aspect is proposed by Congdon [5], where is considered that uniform
borrowing of strength based simply on proximity or contiguity may not be appropriate when there are
discontinuities in the spatial pattern of health events or risk factors; for instance, a low mortality area
surrounded by high mortality areas. Such discontinuity may often reflect spatial discontinuities in risk
factors, whether observed or unobserved. An area showing such discontinuity may have a distorted
smoothed rate when smoothing is towards the local mean.

In this submission we will present results of the implementation of the above two mentioned models.
Section 2 will provide a brief overview of the similarity model, Section 3 will provide a brief overview
of the adaptive model and Section 4 will provide a brief overview of the data used. This is still work in
progress, so no results will be presented now.

2 A similarity-based Gaussian random field model

The GRF model proposed no longer retains the Markovian properties as those based on the neighbour-
hood weights. Instead of using spatial distance or spatial adjacency, a measure reflecting similarity
between areas is introduced. Data used should come from: a) a disease determinant factor or a combina-
tion of factors, b) a source external to the survey that collected the disease data. The main objective of the
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proposed model is the provision for borrowing strength between areas with similar disease determinant
factors.

Firstly, regions exhibiting the same or close level of risk in a determinant factor will be regions with
the same or close risk of the disease. Secondly, if disease data need to be strengthened, using disease
determinant factor information collected by the same survey might inflate or not remediate possible
weaknesses of the disease data. Therefore, an external source for the disease determinant factor is critical.

The rationale of our approach is the following: in cases of diseases with no environmental deter-
minant factors, use of a positive spatial correlation based on physical distance or adjacency, in the
GRF/GMRF model, may not be the best way to reflect similarity between areas. By using the GRF
model reflecting how similar each area is to one another, in terms of a disease determinant factor that
was collected by an external source, the disease risk distribution can be better assessed.

We use the BYM model (more detailed specifications can be found elsewhere [3]), with a neigh-
bourhood matrix based on a matrix definition proposed by Best et al. [4], the new similarity matrix, with
elements hi j for each region i, with the following structure:

hi j =

{
e−pi j/b, if j 6= i

1
n−1 ∑h(−i), otherwise,

where pi j is the absolute gap between region i and region j, pi j = |pi− p j|, in terms of the disease
determinant factor, and b is equal to a value that gives a relative weight of 1% (hi j = 0.01) to an area i
whose difference from an area j is the mean inter-region difference for the country. Elements hii need a
specific definition, otherwise their value would be the one contributing the most to the prior, as e0 = 1
and all other di j elements have values between 0 and 1. Therefore, pii values are equal to the average
value of all elements except the ith area value.

More details can be found in Baptista et al. [1].

3 A Spatially Adaptive Conditional Autoregressive Prior

The similarity based GRF prior (Section 2) replaces spatial proximity as a basis for borrowing strength
by similarity in one or more risk factors, and so takes explicit account of the actual spatial pattern of risk
factors, allowing for the case when that pattern may be irregular (not spatially smooth). By contrast, the
spatially adaptive approach retains the principle of spatial borrowing of strength, but modifies it to better
represent discontinuities in the outcome and/or observed risk factors. The degree of spatial correlation is
allowed to vary between sub-regions of the region under consideration, with one possible scheme linking
varying spatial correlation to spatial similarity (or dissimilarity) in risk factors between an area and its
surrounding locality.

We start with the Leroux et al. [9] model and here we propose spatial adaptivity based on area specific
λ ∈ [0,1], the uniform measure of spatial dependence. For areas i, distinctly low λi correspond to spatial
disparate areas, unlike their neighbours in health risk and/or risk factors, so that there may be benefit in
downweighting the principle of uniform pooling to the locality mean.

If predictors Wi measuring dissimilarity in observed risk factors are available, and so relevant to
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whether pooling should be local or global, one can use a regression scheme logit(λi) ∼ N(Wiγ,1/τλ),
where γ are regression parameters. For example, in Congdon (2008) the discrepancy measure is based on

area socioeconomic deprivation zi, with dissimilarity represented as Wi = |zi−
−
Zi| with

−
Zi being average

deprivation in the locality Li around area i, namely
−
Zi = ∑

j∈Li

z j/di.

More details can be found in Congdon [5].

4 The data

The relative merits of the methodologies mentioned in sections 3 and 4 must be investigated by applying
those models to data sets exhibiting different patterns of spatial association. Therefore, both models are
assessed under the spatial association generated by data sets used either in Baptista et al. [1] (alcohol
abuse disorder) and Congdon [5].

Other data sets are under investigation and may be used.
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Abstract. In Portugal, the Portuguese National Statistical Institute publishes quarterly labour market
figures at national level and for both NUTS I and NUTS II regions. Over recent years it has become
increasingly important to know these figures at more disaggregated levels. However, using the cur-
rent estimation method, it is not possible to produce satisfactorily precise estimates. This problem is
known in the literature as ‘small area estimation’. Some alternative methods have subsequently been
proposed, one of which - and perhaps the most important - is the Fay-Herriot model, an areal model
which assumes normality of the data. However, the assumptions made in this model are very restrictive
and do not appear to be suitable in the context of unemployment. From the 4th quarter of 2014 on-
wards, all the sampling units (the residential buildings) of the Portuguese Labour Force Survey (PLFS)
were georeferenced. To take advantage of this, the authors proposed using this new data, along with
the information regarding the inhabitants themselves. Thus, the method we propose is based on a point
referenced data model, also described as a geostatistical model. This model assumes that the points in
the population are fixed and the interest is to model the spatial variation of the marks. Here, the points
are the residential buildings, whereas the associated marks are the number of unemployed people re-
siding in these buildings. The inference will be based on the Integrated Nested Laplace approximations
(INLA).

Keywords. point-referenced data models; Bayesian inference; unemployment estimation; small area
estimation; INLA

1 Introduction

In Portugal, the National Statistical Institute (NSI) is responsible for performing, on quarterly basis,
the Labour Force Survey (LFS) covering the entire national territory and for supplying the national and
European entities the conclusions taken from these sample surveys. Consequently, the NSI publishes of-
ficial quarterly labour market statistics, including the estimated unemployment figures at different spatial
resolutions, typically for NUTS I and NUTS II regions. NUTS is the classification of territorial units
for statistics, created by the Eurostat and the National Statistical Institutes of European Union, and it
includes three hierarchical levels: NUTS I, NUTS II and NUTS III (see figure 1).

Together with the increase in demand for ever detailed information at higher spatial resolutions,
the demand for more reliable estimates without increasing the cost of larger samples also increases.
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Figure 1: NUTS (version 2013) and counties in mainland Portugal

Typically, NSI produces unemployment estimates based on direct estimation methods based on Horvitz-
Thompson estimator. However, these direct estimation methods do not perform well in small areas,
increasing the demand either for larger samples or for small area estimation methods (Rao and Molina,
2015) that borrow strength from neighboring observations.

There have been considerable methodological developments to solve small area estimation problems
in an unemployment context. The majority of small area methods are based on generalized linear models
applied to areal data by modelling an appropriate counting process. These methods can "borrow strength"
from area to area and make use of auxiliary information at regional level, compensating for the small
sample sizes in each area due to the designed sampling survey. One of the most important traditional
methods in SAE is the Fay-Herriot (FH) model, proposed by Fay and Herriot (1979). This method is an
areal level model that uses the direct estimators as data, instead of the observed values in the sample. By
doing this, it can provide directly estimates for the population. However, we think that a critical analysis
must be done about the assumptions in this model. One of them is the normality assumption for the direct
estimators. In many real applications that assumption is not adequate.

From 2014 onwards, all the sampling units in the LFS are georeferenced, namely the dwellings in
which the observation units (i.e. individuals) are interviewed. This new data structure permit using point
referenced models (Banerjee et al, 2005). Hence, with such new information as this, the objective now
becomes to model the spatial variation of the sampled marks, namely the number of unemployed people
in each of the sampled dwellings, using a point level model, and then to extrapolate in space to all geo-
referenced dwellings using spatial smoothing. The number of unemployed people in any areal unit A can
then be calculated as the sum of the unemployed in all of the dwellings in that areal unit. Therefore, the
suggested modelling strategy, based on 14,000 dwellings sampled in each quarterly sample survey, fits a
Poisson generalized linear model with a latent spatio-temporal structured random effect for the number
of unemployed people observed in these units, and, by spatial smoothing, extends these unemployment
figures to all dwellings in the population whose geo-referenced positions are now known.

In addition to the spatial smoothing in space, we intend to do a temporal extrapolation. The temporal
extension will be based on 9 sequentially observed quarterly sampling surveys (from the 4th quarter of
2014 to the 4th quarter of 2016).

For the modelling process, we suggest a geostatistical model with a temporally and spatially stru-
cutured random effect. Typically, in this framework, the spatial process is a Gaussian field (GF). Infer-
ence on such models is not straightforward due to the dense covariance matrices, problem known in the
literature as big n problem (Banerjee et al, 2004). Due to computational problems that emerge in this
framework, Lindgren et al (2011) proposed a more computationally tractable approach based on stochas-
tic partial differential equation (SPDE) models, which permit the transformation of a Gaussian field to a
Gaussian markov random field and we follow this method.
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2 Data

We use the Portuguese LFS data from the 4th quarter of 2014 to the 4th quarter of 2016 in the main-
land territory. In each quarter, the sample has around 35000 observations, distributed in about 14000
dwellings, which are in about 13800 residential buildings. Thus, in the most part of the sampled resi-
dential buildings, only one dwelling is selected. Each individual in the sample are questioned about their
state in the labour market (employed, unemployed, inactive), sex, age, education level (primary level,
secondary level, higher level), etc.

The georeferencing of all residential buildings are available, even for the units outside the sample.
Although a residential building can have multiple dwellings, the coordinates information are available
only for the buildings themselves. Since there may be more than one dwelling in each residential unit,
particularly in areas of high population density, multiple dwellings in the survey have the same spatial
location. To avoid an overlap in the locations within the modelling process, the observation units we will
consider are the residential buildings. In the following sections, we will denote the average number of
unemployed people per dwelling in the residential building at s j location and quarter t by y(s j, t) (round-
ing to the nearest integer ). Here, we intend to extrapolate the values observed in the sampled locations
to all residential buildings (around 2300000) by spatial smoothing based on the proposed model.

In the modelling process, we use some covariates at residential buildings level for each quarter,
namely the mean age and the median of the education level.

3 Point referenced data models for unemployment estimation

We will assume a Poisson distribution for y(s, t), the average number of unemployed people per dwelling
observed at residential building with spatial location at s and in quarterly survey t:

y(s, t)|λ(s, t)∼ Poisson(λ(s, t)) (1)

with

log(λ(s, t)) = α+offset(s, t)+
M

∑
m=1

θmzm(s, t)+W (s, t), (2)

where W (s, t) is a latent spatio-temporal process, θ = c(α,{θm,m = 1, ...,M}) are the model parameters,
offset(s, t) is the offset term described in the data section and {zm(s, t),m = 1, ...,M} are the spatio-
temporal covariates.

4 Results

The resultant map of the posterior mean of the average number of unemployed people per dwelling at
location s and quarter t, λ(s, t), is shown in figure 2. We can see that the average number of unemployed
people per dwelling is higher in the Porto, Península de Setúbal and Alentejo regions. We also see a
slightly decrease of this indicator across time.
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Figure 2: Posterior mean of the average number of unemployed people per dwelling by grid cell

The aggregation of the estimates of the total unemployed by NUTS III regions are shown in figure 3.
Here, we can see that there was a decreasing tendency across time during the study period.

Figure 3: Posterior predictive mean of the total unemployed by NUTS III regions
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Abstract. Time series of satellite imagery is nowadays essential for monitoring the evolution of land
use, land cover, vegetation trends, and climatological or phenological changes. However, but some of
these images could be useless because of the presence of clouds. In this paper we propose filling these
clouds through a thin-plate spline (Tps) model that accommodates spatio-temporal dependence among
images. The performance of the method is illustrated with a simulation study where the Tps procedure
is compared with other alternatives. The scenario of the simulation study consists in introducing
at random seven sizes of clouds in three time series of composite MODIS Terra and Aqua images
of Navarre (Spain) between 2011 and 2013. The remote sensing data are the normalized difference
vegetation index (NDVI) and the land surface temperature (LST) day and night. The results show that
the thin-plate spline model outperforms Timesat, Hants and Gapfill in small, moderate, and big clouds
in LST day and night and it is equally competitive with NDVI.

Keywords. kriging; cloud-filling; satellite imagery; geostatistics

1 Introduction

Numerous cloud-filling and smoothing techniques have been developed in the past few years for filling
clouds in satellite imagery [2, 10]. For example, Timesat [3, 4] or Hants [5] are very popular because
of its good performance and free access, and Gapfill [6] is a very recent and promising alternative.
These methods are based on harmonic analysis, polynomial functions with different filters, and quantile
regression respectively, and with different formats all of them borrow the similarity among close images
to fill the clouds. In this work the Normalized Difference Vegetation Index (NDVI) and the Land Surface
Temperature (LST) day and night are used to illustrate the advantages of modelling with thin-plate splines
in a pre-defined neighbourhood of the target image, that includes previous and subsequent images across
the years in a similar way as it is in Gapfill.

2 Data

In this paper we use composite images [1] of the Navarre region from the 2011-2013 time period. Navarre
is a region of approximately 10,000 km2 located in the north of Spain. Elevations vary between 200 and
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2,500 meters in the highest zone of the Pyrenees, located in Northeastern Navarre. Hence, a high presence
of clouds is expected in the north of the region, particularly in Winter [7]. The LST day and night
composite images are provided from the Moderate Resolution Imaging Spectroradiometer (MODIS).
Each one of the LST day and LST night remote sensing data require 138 tiles for enclosing Navarre. The
dataset correspond to 46 scenes with a temporal resolution of 8 days every year. NDVI images of MODIS
Aqua and Terra are composed every 16 days, so that only 23 images are available every year. Therefore,
to achieve 2 composite NDVI images per month every year, we have retrieved 23 images from Aqua and
one image from Terra. In total, 72 scenes with a 16-day temporal resolution have been captured across 3
years of study. The spatial resolution of each tile is equal to 156×145 (22620) pixels of approximately
1 km2 but 11691 pixels are needed to enclose Navarre region.
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Figure 1: Neighborhood example of the LST_day 2011_025 image involved in the thin-plate model and
gapfill method, where different random gaps of size I have been introduced in every image

3 The thin-plate spline model

The thin-plate spline model (Tps) [8] is applied to the mean residuals derived from a neighbourhood of
the target image. For defining the neighbour, let us start with an LST day target image. In this case,
G = 46 images are available every year from (r = 2011, . . . ,2013), which should be arranged into a
3×G = 3×46 matrix, where the rows of the matrix correspond to different years. All the images in the
same column correspond to the same time period but different years. They share a neighbour composed
of this column and the previous and subsequent columns of images; therefore, the neighbour of every
target image consists of 9 images. See Figure 1 as a particular example of the LST day image of the 25th
Julian day of 2012 and its neighbourhood. In the first time period of 2011 and in the last time period of
2013, previous and subsequent images can be used, yet they do not correspond to the years under study.
The second step of this procedure is to compute the mean image (z0g) out of those 9 images and obtain
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the corresponding residuals for the target image (wsrg) from (s = s1, . . . ,sn), where

wsirg = zsirg− z0g. (1)

Next, a thin-plate spline model (Tps) is applied to a 5-times lower resolution of these residuals, yet the
resolution level could change depending on the computing capacity. The lower resolution is obtained
through a mean aggregation. The thin-plate spline model is expressed as a non-parametric function of
the coordinates plus the normal error term, so that

wst j = f (xs,ys)+ εst j , (2)

where wst j = (ws1t j , . . . ,wsnt j)
′ are the n observed pixels (or remote sensing data) of any image captured

in time t j, and xs,ys are the planar coordinates depending on the locations s = (s1, . . . ,sn). The error εst

is assumed to be normally distributed εst ∼ N(0,Σ(d)), where Σ(d) is the covariance matrix depending
on the Euclidean distance d. The spline is obtained as a weighted average of the observed data because
the optimal estimate of f (xs,ys) turns out to be linear in the observations. Finally, the predictions ẑsrg =
zsrg + z0g are computed in the original resolution. The thin-plate spline model is fitted in the R statistical
software using the fields package [9].

4 Results

The simulation study consists in running the 6 methods: 3 versions of Timesat, Hants, Gapfill, and Tps
with 7 sizes of artificial clouds (C,D,E,F,G,H, I) that produce missing data inside a circle. Timesat
needs to be run only once for every remote sensing data and for every size of the artificial clouds in
the three years. Therefore, the introduction of artificial clouds is done once for the whole period, size
cloud and derived variable, yet every image can have different random clouds. Hants needs to introduce
three series of random clouds every year, every size of cloud, and every one of the derived variables,
because the method is run every year separately, otherwise it over-smooths the images. Gapfill requires
pre-defined neighbourhood of 9 images for smoothing 3 images and then, for every running, cloud size,
and derived variable, 9 random clouds are introduced. The performance of the methods is evaluated
with the square root of the mean squared prediction error calculated as the square root of the mean
square differences between observed and filled data for every derived variable in every period and cloud
size. The study shows that overall Tps outperforms the other alternatives, except in big sizes of artificial
clouds, where Gapfill can be more competitive that Tps. However, Gapfill is slower than Tps and could
crash when similar pixels are found in the pre-defined neighbourhoods and ranks are not well balanced.
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Abstract. Otto, Schmid, and Garthoff (2016) introduce a new spatial model that incorporates het-
eroscedastic variance depending on neighboring locations. The proposed process is regarded as the
spatial equivalent to the temporal autoregressive conditional heteroscedasticity (ARCH) model. In con-
trast to the temporal ARCH model, in which the distribution is known given the full information set of
the prior periods, the distribution is not straightforward in spatial and spatiotemporal settings. How-
ever, it is possible to estimate the parameters of the model using the maximum-likelihood approach.
Moreover, we introduce an exponential spatial ARCH models and propose a maximum-likelihood esti-
mator for this kind of spatial ARCH model. In the talk, I focus on the estimation from a computational
and practical point of view. From this perspective, the log-likelihood function is usually sufficient to
get accurate parameter estimates by using any non-linear, numerical optimization function. To com-
pute the likelihood for a certain set of parameters, the determinant of the Jacobian matrix must be
computed, which often requires large computationally capacities, especially for large data sets. In
particular, I show the implementation of the estimation approach in the R-package spGARCH. Eventu-
ally, the function for estimation is demonstrated by an illustrative example.

Keywords. Computational statistics; Disease mapping; Spatial and spatio-temporal covariance mod-
elling.

1 Model Definition

The class of spatial ARCH models have been introduced by [13]. In particular, we consider a univari-
ate stochastic process {Y (s) ∈ R : s ∈ Ds} having a spatial autoregressive structure in the conditional
variance. The process is defined in a multidimensional space Ds, which could be a subset of the q-
dimensional real numbers Rq or of the q-dimensional integers Zq. For the first case, it is important that
the subset contains q-dimensional rectangle of positive volume (cf. [4]). In the latter case, the process is
called spatial lattice process. Moreover, this definition is suitable to model spatiotemporal data, as one
might assume that Ds is a product Rk×Zl with k+ l = d.

Let s1, . . . ,sn denote all locations, and let Y be the vector of observations (Y (si))i=1,...,n, which is
given by

Y = diag(h)1/2ε (1)

where ε = (ε(s1), . . . ,ε(sn))
′ is assumed to be an independent and identically distributed random error
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with E(ε) = 0 and Cov(ε) = I. The identity matrix is denoted by I. The representation is analogous to
the ARCH time-series model of [6]. We now distinguish between several spatial ARCH-type models via
the definition of h.

1.1 Special ARCH-type Models

First, we define this vector h analogous to the definition in [13]. For this model, the vector hO is given
by

hO = α1+ρWdiag(Y )Y , (2)

where diag(a) is a diagonal matrix with the entries of a on the diagonal.

It is important to assume that the spatial weighting matrix is non-stochastic, positive matrix, which
has zeros on the main diagonal to assure that a location is not influenced by itself (cf. [5, 4]). The support
of the distribution of the random errors ε must be compact under certain conditions. Due to the complex
dependence implied by the weighting matrix W, hO is not necessarily positive; thus, diag(h)1/2 might
not have a solution in the real numbers.

There are two cases where the support of the errors does not need to be constraint. If ρ = 0, the
process coincides with a spatial white noise process. Moreover, all entries of h are non-negative, if W
is similar to a strictly triangular matrix. This is the case, if W is nilpotent. This case covers the classical
time-series ARCH(p) models introduced by [6] as well as so-called oriented spARCH processes. For
these processes, the spatial dependence has a certain direction, e.g. observations are only influenced by
observations in a southward direction, or by observation which are closer to an arbitrary center. This
setting also covers recent time-series GARCH models incorporating spatial information (e.g. [2, 3]).

Secondly, we consider an exponential spatial ARCH process (E-spARCH). In this setting, we define
the logarithm of hE as

lnhE = α1+ρWgb(ε) , (3)

with a function gb : Rn→ Rn. Like [12], we assume that

gb(ε) = (ln |ε(s1)|b, . . . , ln |ε(sn)|b)′

for positive values of b. At location si, the value of hE(si) is then given by

lnhE(si) = α+
n

∑
v=1

ρbwiv ln |ε(sv)| for i = 1, . . . ,n . (4)

For this definition of gb, one could rewrite lnh as

lnhE = S(α1+ρbW ln |Y |) (5)

with

S = (si j)i, j=1,...,n =

(
I+

1
2

ρbW
)−1

.

Thirdly, we focus on a mixed model. In particular, a spatial autoregressive (SAR) model with spatial
ARCH residuals is considered. To define the SAR process, we must introduce a further matrix B of
spatial weights. This matrix B could differ from the aforementioned weighting matrix W. However, it B
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is also assumed to be non-stochastic and nonnegative with zeros on the main diagonal. Furthermore, let
λ denote the SAR coefficient, and let Xβ be a regressive term. The model is then defined as follows

Y = Xβ+λBY +ξ , i.e. Y = (I−λB)−1(Xβ+ξ) . (6)

The vector of disturbances ξ = (ξ1, . . . ,ξn) follows a spARCH according to the suggested model in (1).

Compared to an SAR process with autoregressive or moving average residuals (SARAR/SARMA;
cf. [11, 7, 9]), the proposed SAR model with spARCH errors (SARspARCH) has a great advantage.
The first approach also makes it possible to model spatial heteroscedasticity with an autoregressive error
term. However, the autoregressive structure of the errors also affects the spatial autocorrelation of the
process. For the proposed SARspARCH model, it is possible to model the spatial dependence of the
process solely by the weight matrix of the autoregressive part and the heteroscedasticity by the weight
matrix of the spARCH error term. From a practical perspective, this approach has the great advantage
that a spARCH error term can easily be incorporated if a suitable weighting scheme for the spatial
mean process is found, but the residuals remain heteroscedastic. The spatial mean process will not be
affected by the spARCH errors. Generally, the choice of the weighting matrices B and W depends on the
specific problem. Accordingly, if the spatial mean and the variance process are related to each other, one
would expect a similar structure for both weight matrices, e.g., spatial contiguity matrices. In contrast,
one might choose completely different weighting schemes if the spatial mean process and the spatial
variance are not related to each other.

2 Parameter Estimation

The parameters of a spatial ARCH process can be estimated via by the maximum-likelihood approach.
To obtain the joint density for Y = f (ε), the Jacobian matrix of f−1 at the observed values y has to be
computed (e.g., [1]). If fε is the distribution of the independent random errors, the joint density fY of Y
is given by

fY (y) = f(Y (s1),...,Y (sn))(y1, . . . ,yn)

= fε

(
y1√
h1

, . . . ,
yn√
hn

)
|det



(

∂y j/
√

h j

∂yi

)

i, j=1,...,n


 | . (7)

Consequently, the parameters can be estimated by the maximum-likelihood approach. The parameter
estimates are obtained from the maximization of the log likelihood, i.e.,

(α̂, ρ̂) = argmax
α>0,ρ≥0

ln |det



(

∂y j/
√

h j

∂yi

)

i, j=1,...,n


 |+

n

∑
i=1

ln fε(yi) .

The Jacobian matrix, of course, depends on the definition of h.

In the spGARCH package, we implemented the iterative maximization algorithm proposed by [14],
which is implemented in the R-package Rsolnp (see [8]). However, note that the first determinant of
the log determinant of the Jacobian also depends on the parameters, such that it needs to be computed
in each iteration (see also Theorem 13.7.3 of [10] for the computation of a determinant of the sum of a
diagonal matrix and an arbitrary matrix), but W, and therefore also S◦W, are usually sparse.
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3 Implementation in the R-package spGARCH

The R-package spGARCH provides several basic function for the analysis of spatial data showing spatial
conditional heteroscedasticity. In particular, the process can be simulated for arbitrary weighting matrices
according to the definitions given above. Moreover, we implement a function for the estimation of the
model parameters by the maximum-likelihood approach. To generate a user-friendly output, the object
generated by the estimation function can easily be summarized by the generic function summary. We also
provide all common generic methods like plot, print, logLik, etc. To maximize the computational
efficiency, actual version of the packages contains compiled C++ code.
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Abstract. Motivated by segmentation issues in marine studies, a novel hidden Markov model is pro-
posed for the analysis of cylindrical space-time series, that is, bivariate space-time series of intensities
and angles. The model is a multilevel mixture of cylindrical densities, where the parameters of the
mixture vary at the spatial level according to a latent Markov random field, while the parameters of the
hidden Markov random field evolve at the temporal level according to the states of a hidden Markov
chain. It segments the data within a finite number of latent classes that represent the conditional
distributions of the data under environmental conditions that vary across space and time, simulta-
neously accounting for unobserved heterogeneity and space-time autocorrelation. It parsimoniously
accommodates specific features of environmental cylindrical data, such as circular-linear correlation,
multimodality and skewness. Due to the numerical intractability of the likelihood function, parameters
are estimated by a computationally efficient EM algorithm based on the maximization of a weighted
composite likelihood. The effectiveness of the proposal is tested in a case study that involves speeds and
directions of marine currents in the Gulf of Naples, where the model was capable to cluster cylindrical
data according to a finite number of intuitively appealing latent classes.

Keywords. Cylindrical data; hidden Markov model; EM algorithm; Composite likelihood

1 Introduction

A detailed knowledge of coastal currents is crucial for a valid integrated coastal zone management.
Among the different available ocean observing technologies, high-frequency radars (HFRs) have unique
characteristics, that make them play a key role in coastal observatories. HFR data can be conveniently
described as space-time bivariate arrays of angles and intensities that respectively indicate the directions
and the speeds of sea currents across space and over time. Data with a mixed circular-linear support are
often referred to as cylindrical data (Abe and Ley, 2017), because the pair of an angle and an intensity
can be represented as a point on a cylinder.

The statistical analysis of cylindrical space-time series is complicated by the unconventional topology
of the cylinder and by the difficulties in modeling the cross-correlations between angular and linear
measurements across space and over time. Additional complications arise from the skewness and the
multimodality of the marginal distributions of the data. As a result, specific methods for the analysis
of space-time cylindrical data have been relatively unexplored. Proposals in this context are limited to
geostastical models, where cylindrical data are assumed conditionally independent given a latent process
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that varies continuously across space and time (Wang et al., 2015). Geostatistical models give good
results in open sea areas, where waves and currents can move freely without obstacles. Sea motion in
coastal areas provides, however, a different setting. Coastal currents are shaped and constrained by the
orography of the site. As a result, coastal circulation is much more irregular than ocean-type patterns and
it is inaccurately represented by traditional geostatistical models, which do not incorporate orographic
information. The development of a physical model that well represents sea motion in coastal areas
can be a formidable task if the orography of the site is irregular. A more practical approach relies on
decomposing an observed circulation pattern into a small number of local regimes whose interpretation
is easier than the global pattern.

To accomplish this goal, we propose a model that segments coastal data according to finitely many
latent classes that vary across space and time and are associated with the distribution of the data under
specific, space-time varying, environmental conditions. Specifically, we assume that the joint distribution
of the data is well approximated by a multi-level mixture of cylindrical densities. At each time, the
parameters of the mixture vary according to a latent Markov field, whose parameters evolve over time
according to a latent Markov chain. The idea of using hidden Markov models to segment cylindrical data
is not completely novel. Lagona et al. (2015) propose a hidden Markov model for segmenting cylindrical
time series, while Ranalli et al. (2018) propose a hidden Markov field to segment spatial cylindrical data.
Our proposal integrates these specifications in a space-time setting.

A potential disadvantage of the model is the intractability of the likelihood function. We address
estimation issues by relying on composite likelihood (CL) methods (Varin et al., 2011; Lindsay, 1988).
This estimation strategy, on one hand, provides feasible and fast estimation methods. On the other hand,
some dependence among observations is lost, resulting in a loss of statistical efficiency. However, con-
sistency of the CL estimators still holds under regularity conditions (Molenberghs and Verbeke, 2005).
Under these conditions, furthermore, CLEs are asymptotically normal with covariance matrix given by
the inverse of a sandwich matrix, known as Godambe information (Godambe, 1960) rather than the usual
Fisher information matrix for maximum likelihood estimators (MLEs). CL methods have been success-
fully applied in spatial and space-time settings (Ranalli et al., 2018; Okabayashi et al., 2011; Eidsvik
et al., 2014).

2 A cylindrical space-time hidden Markov model

The data that motivated this work are in the form of an n× T array of cylindrical data, say (zit , i =
1 . . .n, t = 1 . . .T ), where zit = (xit ,yit) is a pair of an angle xit ∈ [0,2π) and an intensity yit ∈ [0,+∞),
observed at time t and in the spatial site i. We assume that the temporal evolution of these data is driven
by a multinomial process in discrete time ξ = (ξt , t = 1 . . .T ), where ξt = (ξt1 . . .ξtK) is a multinomial
random variable with K classes. We specifically assume that such process is distributed as a Markov
chain, whose distribution, say p(ξ;π), is known up to a vector of parameters π that includes the initial
probabilities and the transition probabilities of the chain. Conditionally on the value assumed each time
by the Markov chain, the spatial distribution of the data at time t depends on a multinomial process in
discrete space ut = (uit , i = 1 . . .n), where uit = (uit1, . . .uitG) is a multinomial variable with G classes.
We assume that such spatial process is distributed as a G-parameter Potts model, whose parameters
depend on the value taken at time t by the latent Markov chain p(ξ;π). This model depends on G− 1
sufficient statistics

ng(ut) =
n

∑
i=1

uitg, g = 1 . . .G−1,
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that indicate the frequencies of each latent class across the study area, and one sufficient statistic

n(ut) =
n

∑
i=1

∑
j>i: j∈N(i)

Gt−1

∑
g=1

uitgu jtg,

which indicates the frequency of neighboring sites which share the same class (for each i, N(i) indicates
the sets of neighboring sites of i). Precisely, we assume that the joint distribution of a sample ut , condi-
tionally on ξt , is known up to an array of class-specific parameters α= (αgk,g = 1 . . .G−1,k = 1 . . .K)
and a vector of auto-correlation parameters ρ= (ρ1 . . .ρk), and given by

p(ut | ξt ;α,ρ) =
exp
(

∑Gt−1
g=1 ng(ut)αgt +n(ut)ρt

)

W (α,ρ)
, (1)

where

αgt =
K

∑
k=1

ξtkαgk

and

ρt =
K

∑
k=1

ξtkρk.

Our proposal is completed by assuming that, conditionally on the values taken by the Markov chain
and the Potts model, the observed cylindrical data are independently distributed according to cylindrical
densities, known up to a vector of parameters that depends on the latent class taken by the latent Markov
random field at time t in site i. Precisely, we assume that

f (z | ξ,u) =
n

∏
i=1

T

∏
t=1

f (zit ;θitg),

where

θitg =
G

∑
g=1

uitgθg,

and θg is the gth entry of a vector of parameters θ = (θ1 . . .θG). Under this setting, we follow Abe and
Ley (2017) and exploit the following parametric cylindrical distribution, namely

f (z;θ) =
αβα

2πcosh(κ)
(1+λsin(x−µ))yα−1 exp(−(βy)α(1− tanh(κ)cos(x−µ))), (2)

known up to five parameters θ = (α,β,κ,λ,µ), where α > 0 is a shape parameter, β > 0 is a scale
parameter, µ ∈ [0,2π) is a circular location parameter, κ > 0 is a circular concentration parameter, while
λ ∈ [−1,1] is a circular skewness parameter.

The joint distribution of the observed and the latent variables is therefore given by

f (z,u,ξ;θ,π,α,ρ) = f (z | u;θ)p(u;ρ,α)p(ξ;π). (3)

By integrating this distribution with respect to the unobserved variables, we obtain the likelihood function
of the unknown parameters

L(θ,π,α,ρ;z) = ∑
ξ

∑
u

f (z,u,ξ;θ,π,α,ρ). (4)
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The maximization of the corresponding complete log-likelihood through an EM algorithm is unfeasible.
As a result, we propose to estimate the parameters by maximizing a surrogate function, namely a compos-
ite log-likelihood function. Our proposal is based on the specification of a cover A of the set S = {1 . . .n}
of the observation sites, i.e. a family of (not necessarily disjoint) subsets A ⊆ S such that ∪

A∈A
= S. For

each subset A, we respectively define zA = (zit , i ∈ A, t = 1 . . .T ), uA = (uit , i ∈ A, t = 1 . . .T ), and

LA(θ,π,α,ρ;zA) = ∑
ξ

∑
uA

f (zA,uA,ξ;θ,π,α,ρ) (5)

as the contribution of the data in A to the composite likelihood (CL), where CL=∏A∈A LA. This composite
likelihood function involves summations over all the possible values that uA can take. As a result, the
numerical tractability of these steps dramatically decreases with the cardinality of the largest subset of
the cover A. On the one side, this would suggest to choose a cover with many small subsets. On the
other side, a cover that includes a few large subsets is expected to provide a CL function that is a better
approximation of the likelihood function. Because summations overuA become cumbersome for |A |≥ 3,
a natural strategy is a cover that includes subsets with 2 elements. When A include all the subsets of two
elements, then composite likelihood reduces to the pairwise likelihood function (Varin et al., 2011). In
a spatial setting, a pairwise likelihood can be further simplified by discarding all the pairs (i, j) that are
not in the neighborhood structure N(i), i = 1 . . .n. This choice provides a computationally efficient EM
algorithm, without sacrificing the good distributional properties that are expected by a CL estimator.
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Simulation of isotropic Gaussian random Fields on Spheres
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Abstract. In several domains of the Geosciences (climatology, cosmology, geodesy or paleomag-
netism), data are supported by spheres. As they often exhibit spatial strutures, it may be interesting
to examine them using a geostatistical approach. At first some background is provided on several
geometric and stochasic features of the sphere that make it so different from Euclidean spaces (spher-
ical harmonics, Schoenberg representation of covariance functions). Then an algorithm is proposed
to perform continuous simulations of isotropic Gaussian random fields on the sphere. This algorithm
requires knowledge of the spectral measure of the covariance function. Besides a few examples, par-
ticular attention is paid to the spectral measures of the Yadrenko class of covariance functions.

Keywords. Spherical harmonics; Spectral measures; Yadrenko covariances; Chentsov construction.

1 Background: Geometric aspects

In this presentation, the workspace is the unit sphere S2 = {x ∈ R3 : |x|= 1} centered at the origin, say
o. Each point x ∈ S2 can be specified by its polar coordinates, namely its longitude 0 ≤ φ < 2π and its
colatitude 0≤ θ≤ π. The geodesic distance between two points x,y ∈ S2 is the angle α(x,y) separating
x and y when both points are seen from o. Explicitly α(x,y) = arccosx · y, where x · y denotes the scalar
product between ~ox and ~oy in R3. On the metric space (S2,α) the invariant measure dσ(x) = sinθdθdφ
can be defined. Its integral over S2 is equal to 4π.

Spherical harmonics are complex-valued functions that act on S2 exactly as complex exponentials on the
circle. They are defined by

Yn,k(x) =

√
2n+1

4π
(n− k)!
(n+ k)!

Pn,k(cosθ)eikφ x = (θ,φ) ∈ S2,

where

Pn,k(t) =
(−1)n+k

2nn!
(1− t2)k/2Dn+k(1− t2)n −1≤ t ≤+1

is the associated Legendre polynomial. In particular, Pn,0 is a Legendre polynomial (noted Pn). At first,
it may look strange to index a countable family of functions using a degree n and an order k. In fact, n
is non-negative and k varies from −n to +n, so that Yn,−k = (−1)kȲn,k. Fig. 1 shows typical examples of
spherical harmonics.

Spherical harmonics satisfy two properties [2] that are essential in this presentation:
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Figure 1: Spherical harmonics of degree 15 and orders 0,5,10 et 15 (real parts).

– They constitute an orthonormal basis of L2(S2,C;σ);

– They satisfy the addition property:

4π
2n+1

+n

∑
k=−n

Yn,k(x)Ȳn,k(y) = Pn(x · y) x,y ∈ S2, n ∈ N.

2 Background: Stochastic aspects

Let Z =
(
Z(x),x ∈ S2

)
be a real-valued random field on S2. Z is said to be second order stationary (or

second order isotropic) if, (i) there exists m ∈ R such that E{Z(x)} = m for each x ∈ S2, and, (ii) there
exists a function C : [0,π] 7→R such that Cov{Z(x),Z(y)}=C

(
α(x,y)

)
for each x,y ∈ S2. Here, m is the

mean of the random field and C its covariance function. It was established by Schoenberg (1942) that C
is a covariance function on S2 if and only if

C(α) =
∞

∑
n=0

anPn(cosα)

for some summable series (an) of non-negative terms. The measure ∑∞
n=0 anδn is called the spectral

measure (or angular power spectrum) of C.

Covariance functions on spheres may largely differ from those on Euclidean spaces. For instance, Gneit-
ing [1] mentions that the function C(α) = exp(−α2) is not positive definite on spheres. Starting from any
two-dimensional Euclidean and isotropic covariance function Ce, and denoting its radial part by C2 (i.e.
Ce(h) =C2(|h|)), Yadrenko [4] shows that the function C(α) =C2

(
2sin(α/2)

)
is positive definite on S2.

Although not general1, the Yadrenko class is large enough to encompass all possible type of behaviours
at the vicinity of the origin.

The random field is said to be Gaussian if any finite linear combination of its variables is Gaussianly
distributed. As a Gaussian variable is characterized by its mean and its variance, the spatial distribution
is characterized by its mean and its covariance function (or its spectral measure).

1For instance, the function C(α) = λ(1− 2α/π) is positive definite on S2, but not a a Yadrenko covariance function. It is
the covariance function of the Chentsov-type random field Z(x) = ∑p∈P

(
21α(x,p)<π/2−1

)
where P is a homogeneous Poisson

point process with intensity λ on S2.
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3 Simulation of a Gaussian random field on S2

Our objective is to simulate a Gaussian random field with mean m and covariance function C on S2. Of
course, there is no inconvenience in assuming the random field standardized (zero mean, unit variance),
in which case the spectral measure ∑∞

n=0 anδn is a probability measure, say S .

Draw a random degree N from S , a random order K uniform over {−N, ...,+N} and an independent
phase Φ uniform over [0,2π[. Then consider the random field

Z(x) = 2
√

2πRe
(
YN,K(x)eiΦ) x ∈ S2.

The presence of the phase ensures that Z is centered. Regarding the covariance function, let us start with
Z(x) =

√
2π
[
YN,K(x)eiΦ + ȲN,K(x)e−iΦ]. Then we have

Cov{Z(x),Z(y)}= 2πE
{[

YN,K(x)eiΦ + ȲN,K(x)e−iΦ][ȲN,K(y)e−iΦ +YN,K(y)eiΦ]}

= 2πE
{

YN,K(x)ȲN,K(y)+ ȲN,K(x)YN,K(y)}

because all terms with the random phase vanish when taking the expectation. Then, the addition property
yields

Cov{Z(x),Z(y)}= E{PN(x · y)},
and it remains to calculate this expectation to obtain

Cov{Z(x),Z(y)}=
∞

∑
n=0

anPn(x · y) =
∞

∑
n=0

anPn
(
cosα(x,y)

)
=C

(
α(x,y)

)
.

In particular, Var{Z(x)} = ∑∞
n=0 an = 1. Accordingly, Z is standardized. Now, it should be pointed out

that Z is not a Gaussian random field. However, if independent copies Z1, ...,Zp of the basic random
field Z are generated, then the Central Limit Theorem states that the spatial distribution of Z(p) = (Z1 +
· · ·+Zp)/

√
p tends to be multivariate Gaussian as p becomes very large. Among the possible criteria

to select p, the 4th order moment approach is particularly simple. Consider the linear combinations
Z(Λ) = ∑n

i=1 λiZ(xi) and Z(p)(Λ) = ∑n
i=1 λiZ(p)(xi). Both variables Z(Λ) and Z(p)(Λ) have the same

variance σ2 but different moments of order 4, denoted by µ4 and µ(p)
4 . If Z was multivariate Gaussian,

then we would have µ4 = µ(p)
4 = 3σ4. A simple calculation shows

µ(p)
4 −3σ4 =

1
p

(
µ4−3σ4).

4 Determination of the spectral measure

This simulation algorithm rests on the spectral measure of the covariance function. Literature says very
little about it, up to the notable exception of Terdik [3].

Explicit calculations are sometimes possible. This is for instance the case of the Chentsov covariance
function C(α) = 1− 2α/π. The even coefficients of the spectral measure vanish. The odd ones are
related by the induction formula

an =
2n+1
2n−3

(n−2)2

(n+1)2 an−2,
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Figure 2: 4 views at 90◦ angles of a Gaussian random field with a Chentsov covariance function.

starting from a1 = 3/4. The simulation of Fig. 2 has been obtained using 15000 basic random fields.

Another example is the exponential covariance function C(α) = e−να where ν > 0. The even and odd
coefficients of the spectral measure satisfy the same induction formula

an =
2n+1
2n−3

ν2 +(n−2)2

ν2 +(n+1)2 an−2,

starting from a0 = (1+ e−νπ)/(1+ν2) and a1 = 3(1− e−νπ)/(4+ν2). Fig. 3 shows a simulation with
ν = 0.1. 20000 basic random fields were used.

Figure 3: 4 views at 90◦ angles of a Gaussian random field with a exponential covariance function.

In the case of Yadrenko covariance functions, the spectral measure of C can be related to that of Ce (as
provided by Bochner theorem). Denoting by dF2(r) its radial part, the following 3 formulae can be used
to calculate or compute the an’s (Jλ is the Bessel function of order λ):

an =
2n+1

2

Z +1

−1
Cs(arccos t)Pn(t)dt,

an =
2n+1

2

Z +1

−1
C2
(√

2(1− t)
)

Pn(t)dt,

an = 2π(2n+1)
Z ∞

0
J2n+1(2r)dF2(r).
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Abstract. This paper revisits axial symmetry for spatial data, putting special emphasis on results
obtained recently by the same group of authors. Then, axial symmetry for space-time data is discussed
and new models for this characterization are proposed. We illustrate our findings on applications to
climate models.

Keywords. Axial Symmetry; Covariance Function; Space-Time

1 Introduction

The increasing availability of data on a global scale, both from climate model simulations and from satel-
lite observations, calls for providing statistical methodologies that are suitable for spherical domains. The
construction of valid global models is, however, very different from the Euclidean geometries, being very
popular in classical geostatistics. Even with Gaussian processes, covariance functions over spherical do-
mains require a very different mathematical theory (Gneiting, 2013; Berg and Porcu, 2017; Jeong et al.,
2018; Porcu et al., 2018a). Furthermore, while for Euclidean data the isotropic assumption might be suit-
able (at least as a first-order approximation), and could be the building block for the development of more
sophisticated models, this is not the case for global data. As explained by Porcu et al. (2018b), isotropy
might be suitable for microscale meteorology, but it is not for mesoscale and synoptic scale meteorol-
ogy, where the Earth’s axis inclination, global circulation and teleconnections generate dependencies in
dominant directions for many physical variables. While statistical models must be tailored for a given
variable and account for the physics of the problem, a sensible first-order approximation would be that of
heterogeneous spatial dependence across latitude, while stationarity could be assumed across longitude.
This class of models, called axially symmetric (Jones, 1963), has been proposed as a standard for global
data by Stein (2007) while analyzing total Ozone mapping spectrometer data. Different approaches have
been developed to allow closed form expression of covariance functions via partial derivatives (Jun and
Stein, 2007, 2008), spectral characterizations (Hitczenko and Stein, 2012), as well as fast spectral infer-
ence schemes for massive datasets (Castruccio and Stein, 2013; Castruccio and Genton, 2018). Recently,
Porcu et al. (2018b) have proposed an axially symmetric version of the Matérn model, where both scale
and smoothness parameters are adapted to become functions of latitudes.

This paper revisits axial symmetry for spatial processes on spheres and discusses the construction of
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space-time processes that are spatially axially symmetric.

2 Axial Symmetry

Let S2 = {s ∈ R3,‖s‖ = 1}, be the unit sphere, where ‖ · ‖ denotes the Euclidean distance. Any point
s ∈ S2 is represented through its spherical coordinates s = (L, `), with L ∈ [−π/2,π/2] and ` ∈ [−π,π)
being respectively the latitude and longitude (equivalently, polar and the azimuthal angles).

The geodesic is defined as the mapping dGC : S2×S2→ [0,π] so that

dGC(s1,s2) = arccos
(
〈s1,s2〉

)
= arccos

(
sinL1 sinL2 + cosL1 cosL2 cos |∆`|

)
,

with si = (Li, `i), i = 1,2, and 〈·, ·〉 denoting the dot product on the sphere, and where ∆` = `1− `2.
Henceforth, we shall equivalently use dGC(s1,s2) or the shortcut dGC to denote the geodesic distance,
whenever no confusion arises. which defines a segment below the arc joining two points on the spherical
shell.

Consider a zero mean Gaussian random field over the sphere {Z(s), s ∈ S2} with finite second or-
der moment. The finite dimensional distributions are therefore completely specified by the covariance
function C : S2×S2→ R, defined by

C(s1,s2) = Cov
(
Z(s1),Z(s2)

)
, s1,s2 ∈ S2.

Covariance functions are positive definite: for any κ dimensional collection of points {si}κ
i=1 ⊂ S2

and constants c1, . . . ,cκ ∈ R, we have ∑κ
i=1 ∑κ

j=1 ciC (si,s j)c j ≥ 0, see Bingham (1973). Porcu et al.
(2018a) call C geodesically isotropic if

C(s1,s2) = ψ(dGC(s1,s2)), (1)

for some ψ : [0,π]→ R. The function ψ is called the geodesically isotropic part of C (Daley and Porcu,
2013). For a characterization of geodesic isotropy, the reader is referred to Schoenberg (1942), the essay
in Gneiting (2013) and the more recent work of Berg and Porcu (2017).

For quantities observed on a global scale, isotropy is not tenable. While processes at small scale
(micro-scale, turbulence scale) might be approximately regarded as isotropic, large-scale meteorological
patterns have preferred directions driven by general circulation. Indeed, Stein (2007) showed that total
column ozone data show significant changes over latitudes. Castruccio and Stein (2013) argued that both
the inter- and intra-annual variability for surface temperature are dependent on latitude. This leads to the
definition of an axially symmetric covariance C when

C (s1,s2) = C (L1,L2,∆`). (2)

for some function C : [−π/2,π/2]2× [−2π,2π]→ R.

The Matérn function Mν(·;α) : [0,∞)→ [0,∞) is defined as

Mν(d;α) =
21−ν

Γ(ν)

(
d
α

)ν
Kν

(
d
α

)
, d ≥ 0, (3)
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where α > 0 is the range, and ν > 0 is the parameter that controls the mean square differentiability of the
process (Stein, 1999). Observe that we do not call it covariance function because to become a covariance
it must be composed with a metric. In classic application people use the Euclidean distance on the plane,
or the chordal distance on the sphere. In fact, Mν(dGC;α) is no longer a covariance function, unless
ν ∈ (0,1/2] (Gneiting, 2013).
Porcu et al. (2018b) propose a Matérn version that is axially symmetric. Specifically, they have

C (L1,L2, `) = σ(L1,L2)Mν̃(L1,L2)

(
|∆`|;

√
α̃(L1,L2)

)
, (L1,L2,∆`)∈ [−π/2,π/2]2× [−2π,2π], (4)

where the continuous functions σ, α̃, ν̃ must respect some constraint that we do not specify here to avoid
mathematical obfuscation.

2.1 Space-Time and Axial Symmetry

We now consider a zero mean Gaussian random field over the sphere cross time, that is {Z(s, t), s ∈
S2, t ∈R}with finite second order moment. The finite dimensional distributions are therefore completely
specified by the covariance function C : S2×R×S2×R→ R, defined by

C
(
(s1, t1),(s2, t2)

)
= Cov

(
Z(s1, t1),Z(s2, t2)

)
, s1,s2 ∈ S2, t1, t2 ∈ R.

The function C is called separable if it factors into the product of a merely spatial with a merely temporal
covariance. We call the function C axially symmetric and temporally stationary if

C ((s1, t1),(s2, t2)) = C (L1,L2,∆`,∆t). (5)

for some function C : [−π/2,π/2]2× [−2π,2π]×R→ R. Here, ∆t = t1− t2. Characterization of the
functions C that satisfy this hypothesis has been elusive so far. To the knowledge of the authors, there is
a clear lack of nonseparable parametric models that allow to model this kind of situation. This will be
the central core of our proposal. We give here an informal suggestion to avoid mathematical obfuscation.
We shall consider the class

C (L1,L2,∆`,∆t) =
1

f (L1,L2,∆t)1/2 g
( |∆`|

f (L1,L2,∆t)

)
,

for two functions f and g that must be determined to ensure positive definiteness. We shall show that
the assumption on the function f is very simple (for instance, f might be completely monotonic on the
positive real line). Instead, some technical assumptions will be needed on the function g and these will
be explained through the presentation at METMA conference.
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Abstract. We offer a dual view of the dimple problem related to space-time correlation functions in
terms of their contours. We find that the dimple property (see [4]) in the Gneiting class of correlations
is in one-to-one correspondence with non-monotonicity of the parametric curve describing the associ-
ated contour lines. Further, we show that, given such a non monotonic parametric curve associated
to a given level set, all the other parametric curves at smaller levels inherit the property of non mono-
tonicity. We finally propose a modified Gneiting class of correlations having monotonically decreasing
parametric curves and no dimple along the temporal axis.

Keywords. Covariance function; Dimple; Gneiting class.

1 Introduction

Spatio-temporal geostatistics deals mainly with the second order properties of stochastic processes de-
fined over a spatial domain and evolving over time. In particular, covariance and correlation functions
allow one to describe the interactions between spatial and temporal components, and they are crucial to
both estimation and prediction [5].

Let Z(x,u) denote a space-time random field with continuous spatial index x ∈ Rd and temporal
index u ∈R. This work is concerned with stationary correlation functions that are spatially isotropic and
temporally symmetric, i.e.,

corr{Z(x,u),Z(x+h,u+ v)}=C(‖h‖, |v|), (h,v) ∈ Rd×R, (1)

with C being continuous and such that C(0,0) = 1, and where ‖ ·‖ denotes the Euclidean norm. Through
this work we abuse of terminology and we say that C is the space-time correlation function of Z. Also, we
write (r, t) for the pair (‖h‖, |v|) above. [2] provide the so called Gneiting class of correlation functions,
given by
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C(r, t) =
1

ψ(t2)δ ϕ
{

r2

ψ(t2)

}
, (r, t) ∈ [0,∞)× [0,∞), (2)

where ϕ is a completely monotone function and ψ is a Bernstein function. In what follows we fix δ and
without loss of generality we assume that ψ(0) = ϕ(0) = 1. In addition, we assume that ϕ(t)→ 0 when
t→ ∞ and that ψ(t)→ ∞ when t→ ∞.

Gneiting’s class of correlation functions are very flexible. However, depending on the choice of ϕ
and ψ in Equation (2), the Gneiting class can be counterintuitive. Such problem was detailed in [4]
and was called the dimple property. Dimple in a space-time correlation can be understood as follows:
Z(xhere,unow) is more correlated with Z(xthere,utomorrow) than with Z(xthere,unow). Such property should
be taken into account when modeling space-time data ([4]).

In this work we study the contours Cy of Equation (2) to describe the dimple property. In this case Cy

is described by the parametric curve r = f (t;y) which takes the form

f (t;y) =
[
ϕ−1

{
yψ(t2)δ

}
ψ(t2)

]1/2
, y ∈ (0,1), t > 0, (3)

where t is such that yψ(t2)δ ≤ 1, so that f is well-defined. Here, ϕ−1 denotes the proper inverse of ϕ. In
particular, ϕ−1(1) = 0 and ϕ−1(0) = ∞.

In this work we show that the dimple property of the Gneiting class in Equation (2) is intimately
related to a non-monotonic property of the parametric curves depicted through Equation (3). Further, we
show that for any fixed y∗ such that f (·;y∗) is non-monotonically decreasing, all the curves of the type
f (·;y∗− ε), for all ε > 0, will be non-monotonically decreasing as well. Motivated by the constructive
criticism on the counterintuitive behavior of correlation functions that satisfy the dimple property, we
propose a correlation function of the Gneiting type but with no dimple along the temporal axis. The
proofs of the theoretical results are deferred to [1].

2 Dimple, contours, and parametric curves

The dimple property appears when, for a fixed spatial lag r0, the temporal margin C(r0, ·) is non-
monotonically decreasing. The formal statement was introduced by [4] and is detailed below.

Definition A stationary, spatially isotropic and temporally symmetric correlation function C(r, t) has a
dimple along the time lag t if there exists a z∗ > 0 such that the following properties hold:

(a) for fixed r2 ≤ z∗,C(r, t) is decreasing in t ≥ 0;

(b) for fixed r2 > z∗,C(r, t) is increasing for t ∈ (0, t∗) for some t∗ = t∗(r2) > 0, and decreasing for
t ∈ (t∗,∞).

We now follow [4] when introducing the function Q : R+→ [0,∞], defined through

Q(z) =−zϕ′(z)
ϕ(z)

, z > 0. (4)
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The function Q is the crux of the following criterion (provided by [4]).

Theorem Consider Gneiting’s model as defined through Equation (2). If the function Q(z) defined by
(4) is increasing in z > 0 and δ < limz→∞ Q(z) ≤ ∞, then Gneiting’s correlation function has a dimple
along the time lag t.

To simplify notation, we write
∂C(r, t)

∂r

∣∣∣∣
(r,t)=(r0,t0)

=Cr(r0, t0).

Analogously, we use Ct , ft and fr for the partial derivatives associated to C and f , if they exists, respec-
tively. Our first finding is the following result.

Theorem Let C be the Gneiting correlation defined through Equation (2). Let f be given by Equation
(3) and suppose that Cr is strictly positive on [0,∞)× [0,∞). Then, C has a dimple if and only if there
exists a y∗ ∈ (0,1) such that f (·;y∗) has a maximum r∗ = f (t∗;y∗), with t∗ from Definition 2.

For the Gneiting class of correlation functions, Theorem 2 gives an explicit relationship between the
dimple effect and the non-monotonicity of the parametric curves f in Equation (3). Rephrased, we have
that the Gneiting correlation C has a dimple if and only if there exists a y∗ ∈ (0,1) such that f (·;y∗) is
non-monotonically decreasing in t.

Theorem Let y∗ ∈ (0,1) and t∗ > 0 such that ft(t∗;y∗) = 0. Then, for every ε > 0 such that y∗− ε > 0
there exists λ > 0 such that ft(t∗+λ;y∗− ε) = 0.

To further clarify, an example is given. Consider Equation (4) in [2], which is obtained by choosing
ϕ(t) = exp(−tα),ψ(t) = (1+ tγ)β in Equation (2). We consider the special case α = γ = 1/2 to obtain

C(r, t) = exp
{
− r

(1+ t)β/2

}
(1+ t)−βδ , 0 < β≤ 1, δ > d/2 r, t > 0. (5)

The associated contour lines assume the form

f (t;y) = {− logy−βδ log(1+ t)}(1+ t)β/2, t > 0,y ∈ (0,1). (6)

Direct inspection of the zeros of the first derivative shows that ft(t;y) is identically equal to zero at a
given y ∈ (0,1) for t = −1+ exp(−2/β)y−1/(βδ). Such a zero is located on the positive real line if and
only if − logy ≥ 2δ ≥ d. This gives a direct interpretation of the dimple in terms of dimension d and
contour levels y.

3 A Gneiting class with monotonic parametric curves and no dimples

In [4] the dimple is said to be counterintuitive, so it would be desirable to modify the Gneiting class in
order to have a new correlation with no dimple along the temporal axis. The following result describes
how to obtain such a modified Gneiting class.

Theorem Let δ≥ (d+3)/2 and F be a nonnegative finite Borel measure on [0,∞) such that
∫ ∞

0 sδF(s.) =
1. Let

ϕ(x) =
∫ ∞

0
exp(−xs)sδF(s.), x≥ 0.
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Also, let ψ be continuous on [0,∞), and an increasing and concave function on the positive real line with
ψ(0) = 1. Then

C(r, t) =
ϕ{ψ(t)r}

ψ(t)δ , (r, t) ∈ [0,∞)× [0,∞), (7)

is a correlation function on Rd ×R that is radially symmetric in the spatial argument and symmetric in
the temporal one.

The parametric curve f̃ associated to C in Equation (7) has expression

f̃ (t;y) =
ϕ−1

{
yψ(t)δ}

ψ(t)
, y ∈ (0,1), t ≥ 0, (8)

where yψ(t)δ ≤ 1.

In the Appendix we show that f̃ (·;y) is strictly decreasing for any fixed y ∈ (0,1). One may note
how the non-dimple property in the modified Gneiting class in Equation (7) is achieved at the expense of
a more severe restriction on δ.

Consider the measure F(ds) = s−1 exp(−s)/Γ(δ)ds, for δ ≥ (d + 3)/2 and Γ denoting the Gamma
function. Further, with

ϕ(x) =
∫ ∞

0
exp(−xs)sδF(ds) = (1+ x)−δ, x > 0,

and ψ(t) = (1+ t)α, for α ∈ (0,1], we obtain

C(r, t) = {1+ r(1+ t)α}−δ (1+ t)−αδ , r, t ≥ 0.

The associated parametric curve is strictly decreasing for any y ∈ (0,1).

Acknowledgments. The first author would like to thank the MSH (Maison des Sciences de l’Homme)
and the Department of Mathematics of the University of Montpellier, as well as SFdS and CNRS for
supporting the METMA IX workshop.
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Abstract. Flash floods in France are highly destructive natural phenomena, not only by creating mate-
rial damage but also by threatening the safety of human life. To anticipate the impact of such disasters,
it is crucial to propose stochastic simulation methods of realistic scenarios for spatio-temporal extreme
fields. Pareto processes are justified because they model phenomena that exceed a certain extreme
threshold. Therefore, they are promising models for the aforementioned challenge. Nonparametric and
parametric approaches in this framework have been provided over last years, but the proposed models
do not establish a direct link to Pareto processes. A semiparametric method for simulation of extreme
space-time generalized Pareto processes is introduced. A key benefit of the proposed method is that it
allows to generate an unlimited number of realizations of such extreme fields. Our simulation method
is applied to a rainfall data-set to model flash floods in a region in Mediterranean France.

Keywords. Environmental risk; Extreme Value modelling; Pareto processes; Simulation; Space-time
processes.

1 Introduction

Flash floods can be characterized as floods with a sudden and fast rise of stream flow, and a large peak
flow in terms of specific discharge rate. These floods are linked to intense local rainfall produced in a
short time period or to longer rains with moderate intensities that affect the entire catchment area ([6]).
Over the last 25 years, flash floods in France have constituted one of the most destructive natural phe-
nomena not only creating material damage but also threatening the safety of human life ([9]). Therefore,
the understanding of temporal and spatial variability of the rainfall patterns that generate these floods
has received considerable attention by the authorities. To help with this comprehension through the
analysis of impact models fed with a large number of potential precipitation scenarios, the construction
of stochastic simulation methods of scenarios incorporating realistic spatio-temporal extreme fields is
crucial. To deal with this challenge, we mobilize statistical techniques based on Extreme Value Theory
([3]).

Several nonparametric and parametric approches have been developed for stochastic simulation of
extreme fields ([10] and [4]). Recently, [2] proposed a semiparametric method to simulate extreme
spatio-temporal fields of wave heights in the Gulf of Lions (France) based on the procedure described
in [1]. Although [2]’s approach provides an appropriate simulation technique for wave heights in the
Gulf of Lions, several of its aspects call for methodological improvements. First, this procedure implies
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that the numbers of possible simulations has to be limited is defined in [2]. Second, Pareto processes are
the natural models for this problem since they model phenomena that exceed a certain threshold ([7]).
However, the method in [2] does not establish this link to Pareto processes.

The purpose of this work is to provide a generalization of [2]’s approach to overcome the two out-
lined drawbacks (see Section 3). By using such spatio-temporal extreme modelling, we aim to extract
information from rainfall data in a mediterranean region in France to obtain extremes simulations of the
event, potentially more extreme than those from the observation period. The data-set is described in
Section 2.

2 Rainfall reanalysis data-set for Mediterranean France

From an applied perspective, we aim to create realistic extreme simulations for flash floods in a region
in Mediterranean France. There are different stations localized in our study region where the rainfall
data are measured by irregularly spaced rain gauges. However, in order to develop our study taking into
account the space variable in a more continuous way, the rainfall measurements have to be available over
a sufficiently dense grid of sites. Therefore, the considered rainfall reanalysis data-set was constructed
by a combination of two strategies: on the one hand, algorithms that process radar signals (remotely
sensed rainfall measurements), and on the other hand, water slides of rain gauges. The reanalysed data-
set contains hourly rainfall measurements recorded at 10914 sites that cover a grid of resolution 1km2 in
Mediterranean France, from 1997 to 2007. The unit of measurement is mm. The maximum precipitation
value observed over time at each site is presented in Figure [1] (left panel). The data-set considered was
provided by Météo-France (http://www.meteofrance.com).

A preliminary analysis is realised to improve our understanding of the rainfall data-set. Since our
method is closely related to max-stable modeling (see Equation (1)), we quantify the asymptotic bivariate
extremal dependence by using the extremal coefficient θ, 1≤ θ≤ 2. The limiting case θ = 1 represents
full dependence, whereas θ = 2 represents independence. In our case, we study extremal coefficients for
the spatial and temporal dimension. The spatial extremal coefficient θspa(h) measures the dependence
between pairs of rain data separated by a spatial distance h, at a given time. The time extremal coefficient
θtim(k) measures the dependence between pairs of rain data separated by a time lag k, at a given site (see
Section 2.2 in [2] for more details). Figure [1] (center panel) shows that θ̂spa(h) is always clearly lower
than 2. In addition, from Figure [1] (right panel), we can conclude that the duration of a storm in our
region is not over 2 days. From these observations, it follows that using max-stable-based modeling
techniques, which are useful for asymptotically dependent data, is appropriate.

The previous analysis for the data-set as well as the proposed algorithm in Section 3 are implemented
in parallellized R code.

3 Methodology

In this section, we briefly outline our novel semiparametric spatio-temporal extreme model, which be-
haves asymptotically as a generalized Pareto Process ([5]).

Let C(S×T ) be the space of continuous real functions on S×T , equipped with the supremum norm,
where S is a compact subset of R2 and T is a compact subset of R+. Consider a continuous stochastic
process {X(s, t)}s∈S ,t∈T ∈ C(S ×T ). Suppose that the probability distribution of the process is in the
domain of attraction of some max-stable process, that is, there exist functions an > 0 and bn such that the
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Figure 1: Left panel: Maximum precipitations by sites in a mediterranean region in France. Center
panel: θ̂spa(h) associated to pairs of sites separated by 1500 different distances h. The observation
period is October 1997-April 1998. Fitted local polynomial regression model (black line). Right panel:
θ̂tim(k) for rain pairs separated by a time lag k.

sequence of i.i.d. processes {
max
1≤i≤n

Xi(s, t)−bn(s, t)
an(s, t)

}

s∈S ,t∈T
(1)

converges to a continuous process, say Z(s, t), in distribution in C(S ×T ). Z(s, t) is called max-stable
process. Let ` : C+(S ×T )→ [0,+∞) be a continuous nonnegative and homogeneous function, called
risk functional. Let G be a distribution that belongs to the standard Fréchet maximum domain of attrac-
tion. Let G−1 be the inverse of G. Let FX(s,t) denote the distribution function of X(s, t). We define a
standard transformation T̃ as T̃ (X(s, t)) := G−1

(
FX(s,t)(X(s, t))

)
, ∀s ∈ S , ∀t ∈ T . Following [8], it is

convenient to fix a high threshold function u(s, t) and assume that the marginal distribution satisfies

P(X(s, t)> x) =
[

1+ γ(s, t)
x−µ(s, t)

σ(s, t)

]−1/γ(s,t)

+

(2)

for x > u(s, t), with real parameters µ(s, t) < u(s, t), σ(s, t) > 0 and γ(s, t), such that the right-hand side
of (2) is less that unity.

The following simulation method for a generalized Pareto process {W ∗l (s, t)}s∈S ,t∈T is proposed:

1. Estimate γ(s, t), σ(s, t) and µ(s, t) in (2). Denote the estimators by γ̂(s, t), σ̂(s, t) and µ̂(s, t), re-
spectively. Denote by ˆ̃T X(s, t) and ˆ̃T← f (s, t) the expressions T̃ X(s, t) and T̃← f (s, t) with γ̂(s, t),
σ̂(s, t) and µ̂(s, t) inside.1

2. Select for the normalized processes:
ˆ̃T Xi(s,t)

`( ˆ̃T Xi(s,t))
, i = 1, . . . ,n, those that satisfy `( ˆ̃T Xi(s, t)) > 1, for

some s ∈ S and t ∈ T .

3. Let R be a Pareto random variable with shape parameter 1 and scale parameter α > 0, that is,
P(R > x) = α/x, for x ∈ [α,+∞). Generate R1, . . . ,Rn such that Ri

d
= R, for i = 1, . . . ,n.

4. Finally, generate W ∗`,i(s, t) := ˆ̃T←(W`,i(s, t)), where W`,i(s, t) :=
(

Ri
ˆ̃T Xi(s,t)

`( ˆ̃T Xi(s,t))

)
, i = 1, . . . ,n.

If we rewrite W ∗` (s, t) := T̃←(W`(s, t)), where W`(s, t) :=
(

R T̃ X(s,t)
`(T̃ X(s,t))

)
, ∀s∈ S ,∀t ∈ T , we can formally

1To develop the estimation procedure, we could consider the threshold and the parameters to be constant over time, depend-
ing only on space ([2]). In addition, we use the maximum likelihood estimation procedure applied to (2).
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show that W ∗` behaves asymptotically as a generalized Pareto process.

4 Conclusions

A semiparametric method for simulation of extreme space-time generalized Pareto processes is provided
in this work. In contrast to the approach in [2], our method is not restricted to a limited number of extreme
field simulations. Regarding the data transformation, our method (see item 2 in Section 3) can deal with
more general transformation functions T̃ than the one proposed in [2]. In addition, we generalize the
selection procedure of the extreme event by allowing for more general risk functionals ` (see item 2
in Section 3) than the maximum. While [2] consider a deterministic coefficient ξ > 1 for the uplifting
procedure to generate more extreme, events of yet unobserved magnitude, we use realizations from a
Pareto distribution with scale parameter α. This allows us to find nice interpretations in terms of α. The
proposed method is applied to a rainfall data-set for a region in Mediterranean France in order to model
flash floods in the region. Using our method, the rainfall process can be “uplifted", and we can consider
a more extreme scale of the considered phenomenon, corresponding to projections of extreme fields to
longer observation periods.

Acknowledgments. We would like to thank Météo-France for providing us the data-set. This work was
supported by labEx NUMEV, by the french national program LEFE/INSU and by Montpellier Univer-
sity.
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Abstract. Extreme-value copulas are justified by the theory of multivariate extremes. However, most
high-dimensional copulas are too simplistic for applications. Recently, a class of flexible extreme-
value copulas was put forward by combining two extreme-value copulas with a weight parameter in
the unit hyper-cube. In a multisite study, the copula dimension being the number of sites, this extra-
parametrized approach quickly becomes over-parametrized. In addition, interpolation is not straight-
forward. The aim of this work is to extend this approach to a spatial framework. By taking the weight
parameter as a function of covariates, model complexity is reduced. Moreover, the model is defined at
every point of the space and can be interpreted in terms of distances. We focus on the spatial extension
based on Gumbel copulas and describe its possible extremal dependence structures. The proposed
spatial model is applied on both synthetic and precipitation data in the French Mediterranean.

Keywords. Gumbel copula; Spatial extremes; Intense precipitation events.

1 Regional risk assessment for heavy precipitation

The French Mediterranean is exposed to intense rainfall events called Cevenol events. These regularly
cause flooding leading to important material damages and fatalities. Risk assessment is conventionally
performed by determining at-site T year return levels - the rainfall intensity level that is expected to be
exceeded on average once per T years at a given site. However, for flood risk mitigation, planning is
made at a regional scale. To assess risk regionally, regional return levels - levels that can be exceeded
anywhere in a given region - can be considered.

To estimate regional return levels, knowledge on the spatial dependence patterns of extreme events
is needed. We use a set of 60 rain-gauge stations located in the French Mediterranean for which daily
precipitation is available from 1958-2014 (57 years). The exploratory analysis is performed by studying
the dependence properties of the annual maxima of daily precipitation at a reference site with respect to
annual maxima at all the other sites. For each pair of sites, the bivariate Pickands dependence function
A(·) can be estimated [1]. From the estimator of A(·), we compute the extremal dependence coefficient
χ= 2(1−A(1/2))∈ [0,1] which summarizes the strength of the dependence and the extremal asymmetry
coefficient φ = A′(1/2)/(2(1−A(1/2))) ∈ [−1,1] [3]. When φ < 0 (φ > 0), the reference site tends to
take higher (lower) values than the other site, given that both take high values.
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In Fig. 1, estimates of the extremal dependence coefficients and the extremal asymmetry coefficients
are illustrated for two reference rain-gauge stations. At shorter distances, the χ estimates are about 0.75
indicating asymptotic dependence. In addition, the spatial pattern of extremal dependence - as shown by
the white contour level curves of the χ - can be anisotropic and changes with the location of the reference
site. The coefficients of extremal asymmetry are meaningful only when the extremal dependence is rather
strong, i.e. at short distances. Within the white contour levels, the degree of asymmetry can vary not
only with the distance but also with the orientation of the neighbor site.

Figure 1: Spatial dependence patterns of annual maxima for two reference sites (white star) in the left
and right panels. The grey scale refers to the χ estimates (locally estimated and then smoothed) and two
contour levels at χ = 0.5 and χ = 0.7 are shown as white curves. The stations are coloured in red (blue)
when the asymmetry is positive (negative) and the estimated φ is provided in white above each station.

In order to take into account the aforementioned observations on the spatial pattern of extremal
dependence, we propose to model the annual maxima of precipitation with a max-stable process which
is an extension to a spatial framework of extra-parametrized multivariate extreme value copula [2]. The
proposed max-stable process, once fitted, could be used to simulate long series of fields of annual maxima
from which regional return levels can be estimated.

2 Max-stable process with potential asymmetry and anisotropy

The distribution function of the extra-parametrized multivariate Gumbel copula is, for u and a in [0,1]d :

Ca(u) =CβA(u
a)CβB(u

1−a), (1)

where the vectorial operations are meant componentwise and with Cβ(u) = exp
{
−
[
∑d

i=1(− lnui)
β]1/β

}

the multivariate Gumbel copula with parameter β≥ 1. Since the later is max-stable, it follows that Ca(·)
is max-stable as well [2]. In order to define the above distribution function for any set of d sites, we let
the extra-parameters a = (a1, . . . ,ad) be a function of covariates. More precisely, let xs, 1 ≤ s ≤ d, be
covariate vectors associated to each site. Then the joint distribution at these d sites is given by Eq. (1)
with as = a(xs) for a given functional a(·) . Because of the symmetries in the distribution function of
Eq. (1), we fix βA ≤ βB in order to remove redundant sets of parameters.
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2.1 Bivariate properties

The Pickands dependence function of the extra-parametrized bivariate Gumbel is

A(t) =
[
aβA

1 (1− t)βA +aβA
2 tβA

]1/βA

︸ ︷︷ ︸
AβA

(t)

+
[
(1−a1)

βB(1− t)βB +(1−a2)
βBtβB

]1/βB

︸ ︷︷ ︸
AβB (t)

. (2)

The contribution of the terms AβA(t) and AβB(t) to the asymmetry of the Pickands function is illustrated
in the left panel of Fig. 2. The extremal dependence and extremal asymmetry coefficients can be deduced
from Eq. (2) :

χ = 2− [(aβA
1 +aβA

2 )1/βA +((1−a1)
βB +(1−a2)

βB)1/βB (3)

φ =
(aβA

2 −aβA
1 )(aβA

2 +aβA
1 )1/βA−1 +((1−a2)

βB− (1−a1)
βB)((1−a2)

βB +(1−a1)
βB)1/βB−1

2− [(aβA
1 +aβA

2 )1/βA +((1−a1)βB +(1−a2)βB)1/βB ]
. (4)

The variation of the χ and φ coefficients in terms of 0 ≤ a1,a2 ≤ 1 is illustrated in the middle and right
panels of Fig. 2 for βA = 2 and βB = 5. We note that χ is maximum when a1 = a2 (along the first diagonal)
and increases for decreasing values of the extra-parameter (in the lower left corner). In the limiting case
with a1 = a2 = 0 (a1 = a2 = 1), the extra-parametrized Gumbel boils down to the Gumbel copula with
parameter βB (βA). In addition, φ= 0 - the extra-parametrized Gumbel is symmetrical- whenever a1 = a2.

Figure 2: Bivariate properties of the extra-parametrized Gumbel of Eq. (1). Left : Pickands function
from Eq. (2) with βA = 1.5, βB = 6, a1 = 0.3 and a2 = 0.7. Middle and right : χ from Eq. (3) and φ from
Eq. (4) respectively in terms of 0≤ a1,a2 ≤ 1 with βA = 2 and βB = 5.

2.2 Inference scheme

We performed a two-step inference scheme. First, univariate generalized extreme-value (GEV) dis-
tributions are estimated and serve to transform the annual maxima to Uniform margins. Second, the
extra-parametrized Gumbel parameters are estimated by maximizing the pairwise log-likelihood :

∑
(p j,pk)∈P

n

∑
i=1

log(ca(zi(p j),zi(pk))) (5)

with the first sum running over all the pairs of sites P , the second one over the number of observations
n, zi(p j) is the ith sample at site p j with Uniform margins and ca(·, ·) the bivariate density associated to

METMA IX Workshop 3

106



J. Carreau and G. Toulemonde Spatialized Extra-Parametrized EV Copula

Eq. (1). In the spatial case, the extra-parameters a in Eq. (5) are replaced by their functional form, e.g.
linear, and the functional parameters are estimated.

Initial parameters for the multivariate extra-parametrized Gumbel are determined as follows. A dis-
similarity matrix is built based on the Spearman ρ estimated for each pair of sites and multidimensional
scaling (MDS) is applied to retrieve initial values for the extra-parameters a. The initial Gumbel pa-
rameters βA and βB are determined by estimation on the pairs corresponding to the highest and lowest
as values respectively, 1 ≤ s ≤ d with d the number of sites. In the spatial case, the parameters of the
extra-parameter functional are initialized by performing a regression on the initial values of the extra-
parameters obtained by MDS.

3 Synthetic and precipitation data study

The inference scheme is evaluated on synthetic data generated from the model with Uniform margins.
The extra-parameters follow a linear mapping while βA = 2 and βB = 5. A number of sites, from 4 to 60,
is randomly sampled from the locations of the rain-gauge stations. The number of observations sampled
at each site varies from 20 to 100. We made 1000 replicates for each generative model corresponding
to a given number of sites and of observations. The goodness-of-fit is measured in terms of pairwise
likelihood on test data and root-mean-square error of the estimated parameters.

Global conclusions from the synthetic data study are the following. The initialization strategy is
computationally fast and yields fairly good fit, especially for the smaller training sets. The spatial model
outperforms the multivariate model for the larger training sets while being much faster to fit.

For the annual maxima of precipitation at the 60 rain-gauge stations, we first fit the GEV distribution
whose three parameters are taken as a function of covariates. The extra-parametrized Gumbel is then
fitted to a subset of 8 stations, both in its multivariate and spatial version.

By looking at the bivariate Pickands functions from the fitted models, we conclude that the spatial
model is able to reproduce the multivariate model quite well. The shapes of the fitted Pickands display
various levels of dependence that can change with the orientation of the stations. In addition, there are
several levels of asymmetry. Therefore, these findings stress the need for a max-stable model that can
adapt to anisotropy and asymmetry. Further work is required to achieve a satisfactory fit of the extra-
parametrized Gumbel jointly at the 60 stations.
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Abstract. Species distribution models (SDMs) are a family of statistical tools for ecologists to un-
derstand and predict species range. SDMs suffer from several limitations including the difficulty i) to
incorporate ecological theory like, e.g., dispersal and ii) to account for imperfect species detectability.
Ignoring these issues can lead to bias in inferring species distribution.
Here, we adopt the theory of ecological diffusion that has recently been introduced in ecological statis-
tics to incorporate in ecological models spatio-temporal processes like dispersal or invasion. As a case
study, we focus on wolves (Canis lupus) that have been recolonizing France through dispersal from the
Apennines since the last 20 years.
We developed a Bayesian hierarchical model to combine a mathematical formulation of the tempo-
ral dynamics of species distribution with data collected in the field. The observation process led to
detection/non-detection data that were used to estimate occupancy while accounting for heterogene-
ity in detection due to variation in abundance. Detection was mainly driven by the sampling effort
which we measured as the number of observers per sampling unit. We used differential equations for
modelling species diffusion and growth in a fragmented landscape.
We found that our model accurately described the recolonization process of wolves in France. The
Bayesian framework was particularly useful to quantify parameter uncertainty in the observation and
the ecological processes, and to propagate this uncertainty in the forecasting step.

Keywords. Bayesian hierarchical model; Imperfect species detection; Mechanistic-statistical model-
ing; Reaction-diffusion models; Species distribution models.

1 Introduction

Species distribution models (SDMs) are a family of statistical tools for ecologists to understand and
predict species range by correlating occurrence data and environmental covariates to produce maps of
where species occur and do not occur. SDMs suffer from several limitations including the difficulty i)
to incorporate ecological theory like, e.g., dispersal and ii) to account for imperfect species detectability.
Ignoring these issues can lead to bias in inferring species distribution.

In what follows, we adopt the theory of ecological diffusion that has recently been introduced in
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ecological statistics to incorporate in ecological models spatio-temporal processes like dispersal or inva-
sion [1]. As a case study, we focus on wolves (Canis lupus) that have been recolonizing France through
dispersal from the Apennines since the last 20 years. Understanding the mechanisms leading to the
expansion of wolves in France can help mitigating conflicts with human activities (attacks on livestock).

2 Model

2.1 Observation process

Let yi, j,t be a random variable that takes value 1 if at least one individual is detected at site i = 1, . . . ,K
with spatial location si (the center of site i) within a study area S (si ∈ S⊂ R2) during secondary occasion
(or survey) j = 1, . . . ,Ji,t in year t = 1, . . . ,T , and value 0 otherwise.

Let ni,t be the true abundance. The probability for the species to be detected at site i in year t, pi,t , is
likely to be influenced by the abundance of the species at a site, ni,t . To link the detection/non-detection
process to abundance, we used the Royle-Nichols approach [4] which states that if each individual within
an occupied area has a detection probability, say r, and there is independence of detections among indi-
viduals, then pi,t = 1− (1− ri,t)

ni,t .

We thus have yi, j,t ∼ [yi, j,t |pi,t ] where [yi, j,t |pi,t ] is a probability mass function conditioning occupancy
data yi, j,t on the latent, true abundance ni,t through the species-level detection probability pi,t . Assuming
a binomial observation process, a constant survey effort (Ji,t = J), and that ri,t and ni,t remains unchanged

across the J surveys, we have
J

∑
j=1

yi, j,t ∼ Binomial(J, pi,t). The J repeated surveys within each year t are

used to estimate the species-level detection probability. Note that if ni,t = 0 then pi,t = 0 and yi, j,t = 0 ∀ j.

Covariates can be incorporated in the individual-level detection probability, ri,t . Based on a previous
study [2], we used the sampling effort at site i in year t (Effi,t) and the road density at site i (RoadDi):
logit(ri,t) = β0 +β1 Effi,t +β2 RoadDi.

2.2 State process

We assume that the true abundance is Poisson distributed: ni,t ∼ Poisson(λ(si, t)) where λ(si, t) is the
abundance, a spatiotemporal process that describes the dynamics of the number of individuals in site i.
In general, we have: λ(si, t) =

∫
Bi

u(x, t)dx where u(x, t) is the density at the spatial location x at time
t and Bi is the study area in which counts occur. In our case, we can assume the scale at which data
were collected coincides with the numerical scale in which we solve u(x, t), precluding the necessity to
integrate over Bi.

We used the Partial Differential Equation (PDE) known as ecological diffusion [5] to describe diffu-
sion and growth dynamics. The ecological diffusion PDE in two dimensions with logistic growth is:

∂u(x, t)
∂t

= ∆(D(x)u(x, t))+R(x)u(x, t)(1− u
K(x)

)
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where ∆ is the Laplace 2D diffusion operator (sum of the second derivatives with respect to co-
ordinate). This operator describes uncorrelated random walk movements , with the coefficient D(x)
measuring heterogeneous mobility. The term R(x) is the intrinsic growth rate at low density and K(x) is
the carrying capacity. In addition we assume reflecting boundary conditions, meaning that the population
flows vanish at the boundary of the study site, due to truly reflecting boundaries or symmetric inward
and outward fluxes.

2.3 Bayesian inference

To complete the Bayesian specification of the spatio-temporal occupancy-abundance model, we spec-
ified non–informative priors for the parameters to be estimated. The approach was implemented in
OpenBUGS [3].

3 Results

We found that our model accurately described the dispersal process of wolves in France, and that esti-
mated diffusion of the species was coherent with recolonization (Figure 1).

Wolf estimated abundance 2007 Wolf estimated abundance 2016

Figure 1: Estimated abundance in 2007 and 2016.

4 Discussion

The Bayesian framework was particularly useful to quantify parameter uncertainty in the observation
and the ecological processes. With the objective to implement an adaptive management strategy for the
wolf population, the perspective is to explore the ability of our model to forecast wolf colonization in the
future.
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Abstract. In this study the relationship between injected wastewater produced during oil exploitation
and triggered seismicity is analysed by using the Schuster’s spectrum of the earthquake point process
and the singular spectrum analysis (SSA) of the volume and pressure of the wastewater. Our findings
show that most of the periodicities identified by Schuster’s spectrum of earthquakes coincide with those
identified by the SSA of volume and pressure of the injected wastewater, indicating that these are able
to excite or induce oscillatory fluctuations in the seismic rate, and so, to generate earthquakes.

Keywords. Point processes; Earthquakes; Schuster’s test; Singular spectrum analysis.

1 Introduction

Seismicity induced by the human activity has been documented since the 1920s. In recent years, injection-
induced earthquakes raised great concern. For instance, in the USA the largest injection-induced earth-
quake with magnitude 5.7 occurred in Oklahoma, being the largest induced earthquake in the world.
Although efforts have been made to comprehend the role of fluids in the triggering processes of human-
induced seismicity, indentifying whether an earthquake is triggered by energy technologies is still chal-
lenging. In this study, we focus on the seismically active area of High Agri valley (southern Italy), which
hosts the biggest onshore oil field in west Europe, with an average production of about 3.6×109 kg of oil
per year. On 2 June 2006 the wastewater produced during the oil exploitation started to be pumped back
into a 4km deep injection well; and after only 4 days the seismic activity around increased significantly.
To better investigate the possible link between earthquakes and fluid-injection activities, we applied the
Schuster’s test to the earthquakes and the singular spectrum analysis (SSA) to the fluid-injection vari-
ables (pressure and volume). Our aim is to identify common periodic behaviours in both processes,
which could suggest that oscillatory fluctuations in seismicity might be triggered by fluid-injection peri-
odic forcings. The investigation of periodic behavior is a challenging topic in seismology, since periodic
earthquake occurrences may reflect links with semidiurnal to multiyear tides, seasonal hydrological loads
or 14 month pole tide forcing [1]. So far, no studies have been perfomed in investigating periodicities in
fluid-injection triggered seismicity.
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2 Methods

Considering a series of seismic events, where tk represents the occurrence time of the k-th event of the
series, its associated phase θk is given by

θk = 2π
tk
T

where T is the periodicity to test. A two-dimensional walk can be constructed from the series of earth-
quake occurrence times, whose associated phases drive the successive directions of a unit-length step.
Indicating with D the distance between the start and end points of this walk, the probability p that a
distance greater than or equal to D can be reached by a uniformly random two-dimensional walk, is
the probability of the null hypothesis that the distribution of the time occurrences arises from a uniform
seismicity rate [4]:

p = e
−D2

N

where N is the number of events. The probability p is called Schuster p-value, and the lower its value,
the higher the probability that the occurrence times are governed by the periodicity T . The periodicity
T can be detected above the 95% confidence level if the corresponding Schuster’s p-value is lower than
0.05×T/t, where t is the period of the sequence [2].
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Figure 1: Seismicity (black vertical arrows) and daily variation of volume (red) during the investigation
period.

The Singular Spectrum Analysis (SSA) [5] is a well know decompositional method of irregular
time series, aiming at decomposing a signal into a certain number of independent components (trend,
oscillatory components and structureless noise). Given the series yi, i = 1, · · · ,N, where N is the length
of the series, the SSA is based on the calculation of its Toeplitz lagged correlation matrix with lag W that
is the number of independent components in which the series has to be decomposed. The eigenvalues λk
of the Toeplitz matrix are sorted in decreasing order for k varying from 1 to W , and correspondingly the
eigenvectors E jk are determined, for j varying from 1 to W . The reconstructed components rik of the yi

are then calculated

rik =
1

W

W

∑
j=1

ai− j,kE jk, W ≤ i≤ N−W +1
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where aik is the k-th principal component given by

aik =
W

∑
j=1

yi+ jE jk, 0≤ i≤ N−W

The eigenvalue λk represents the fraction of the total variance of yi hold by the reconstructed component
rik. Typically, most of the total variance of the series is contained in the first reconstructed components
that usually represent the slowly varying trend and the quasi-oscillatory components, while the remaining
ones represents structureless noise.
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Figure 2: p-value of the tested period above (black circles) and below (red circles) the 95% confidence
level (blue line). The green vertical lines indicate the periods of the volume of the injected wastewater.

3 Results

We applied the Schutser’s spectrum to the point process of earthquakes with magnitude ML≥ 1.1 testing
the periods between 1 and 1196 days, and the SSA to volume and pressure of the injected fluid. Figure
1 shows the earthquake series and the time variation of the volume. Figure 2 shows the Schuster’s p-
value (black hollow circles) versus the period tested for earthquakes; the blue line represents the 95%
confidence detection level (a periodicity is significant at 95% confidence if its p-value lies below the
95% confidence detection line (red circles)). Few periods are below the 95% confidence detection level
and may be associated to periodicities in earthquakes. We applied the SSA to volume V and pressure P
with lag W = 169 chosen on the basis of the criterion stated in [3]. Only few significant components are
kept by applying the minimum description length (MDL) criterion [6]:

MDL(k) =−log(
∏W

i=k+1 λ
1

W−k
i

1
W−k ∑W

i=k+1 λi
)

where k is the order of the eigenvalue λk, W is the number of eigenvalues and N is the length of the
original series. The minimum of MDL was at k = 19 for V and k = 21 for P. For each significant com-
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ponent we calculated the periodogram and identified the period corresponding to its maximum. Figure
2 shows the periods of the volume, while Figure 3 show those of the pressure. We can see that there is
a good agreement between most of the periods of the earthquake sequence (red circles) and those of the
volume and pressure (green vertical lines). We can see that most of the periods identified by Schuster’s
test on the earthquakes coincide or are very close to those identified by the SSA on V and P, indicating
that the periodicities contained in these variables are able to excite or induce oscillatory fluctuations in
the seismic rate and so to generate earthquakes.
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Figure 3: p-value of the tested period above (black circles) and below (red circles) the 95% confidence
level (blue line). The green vertical lines indicate the periods of the pressure of the injected wastewater.

4 Conclusions

In this study we applied two robust statistical tools to asses the significant relationship between injected
wastewater and triggered seismicity. The obtained results could contribute to a better comprehension of
seismicity generated by human technologies.
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Abstract. We discuss the use of penalized complexity priors for spatially varying coefficient models,
introducing a natural base model choice that corresponds to a constant coefficient (no variation in
space). Preliminary results on the use of these priors in a case study on air pollution and hospital
admissions in Turin (Italy) are presented.
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1 Introduction

Varying coefficient models (VCMs) [2] are useful in the presence of a variable that modifies the effect
of a covariate of interest on the response. Consider the simple case where there are n observational units
indexed by i = 1, . . . ,n and one covariate xi whose effect on the response yi depends on another variable
zi. Assuming yi belonging to the exponential family, the linear predictor of a generalized VCM is

ηi = α+ f (zi)xi i = 1, . . . ,n. (1)

We follow a Bayesian hierarchical framework where the varying coefficient f (zi) in Eq. (1) is de-
scribed by a vector of random effects θ= (θ1, . . . ,θn)

T distributed at prior as a Gaussian Markov Random
Field (GMRF) [4] with sparse precisionQ(τ ) = τR. For areal data, the index i = 1, . . . ,n indicates each
of the non overlapping regions in a lattice. The spatially varying coefficient θ = (θ1, ...,θn)

T follows an
Intrinsic Conditional Autoregressive (ICAR) model [1]:

θi|θ−i,τ∼ N

(
∑

j:i∼ j

θ j

ni
,(niτ)−1

)

where i ∼ j denotes neighbouring regions (sharing a common border) and ni denotes the number of
neighbours of region i. The joint distribution for θ is given by θ|τ ∼ N

(
0,(τR)−1

)
where the structure

matrixR is a singular matrix with entries:

Ri, j =

{
ni i = j
−1 i∼ j.
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2 Penalized complexity (PC) priors for spatially varying coefficients

A useful parametrization for the varying coefficient is θi = β+ δi, where δi indicates deviation from a
constant slope β at value zi. When δi = 0 ∀i, the varying coefficient f (z) is constant over z and model (1)
becomes a simple linear regression model (base model), while the VCM can be seen as a flexible exten-
sion of it; this flexibility is regulated by the precision parameter τ. Simpson et al. (2017) [5] recently
introduced a new framework for building priors that avoid overfitting denoted as Penalized Complexity
(PC) priors. PC priors are computed based on specific principles in which a model component is seen
as a flexible parametrization of a base model. Model complexity, defined in terms of distance from the
base model, is penalized so that the base model is favoured unless the data support a more flexible one.

If we consider f (z) in terms of the vector of random effects θ= (θ1, . . . ,θn)
T introduced in Section 1,

the base model can be obtained setting the hyper-parameters τ to a particular value. When τ−1 = 0 we
have f (zi) = β, which implies the linear regression model, ηi = α+βxi. For τ−1 > 0, f (zi) incorporates
higher degree of complexity w.r.t. the constant slope, leading to the flexible VCM. The PC prior is an
exponential distribution on the distance scale (measured using the Kullback-Leibler divergence [3]). A
change of variable gives the PC prior in the scale of the precision. For a generic Gaussian Random effect
conditional on τ, the PC prior for τ is the Gumbel type 2 with density,

π(τ) = 0.5λτ−1.5 exp(−λτ−0.5); (2)

for more details see [5]. The parameter λ in Eq. (2) can be selected through a user-defined scaling
approach, by setting U and α such that Pr(1/

√
τ >U) = a, which yields λ =− log(a)/U [5] .

3 Application: PM10 and hospital admissions in Torino, Italy

Data on daily hospital admission due to respiratory causes are available from hospital discharge registers
for the 315 municipalities in the province of Torino, Italy in 2004. On the other hand, daily particular
matter PM10 (µg/m3) data and average temperature (Kelvin degrees) are available at municipality level.
We consider a Poisson regression model that includes spatially structured random effects to estimate the
effect of PM10 on hospitalization risk; the PM10 effect is allowed to vary across municipalities and the
PC prior in Eq. (2) is used for the precision parameter of the varying coefficient. Preliminary results (not
shown here) suggest that the posterior relative risk changes across municipalities.
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Abstract. The paper proposes a stochastic process that improves the assessment of seismic events in
space and time, considering a contagion model (branching process) within a regression-like frame-
work. The proposed approach develops the Forward Likelihood for prediction (FLP) method including
covariates in the epidemic component.

Keywords. Space-time Point Process; FLP; covariates; ETAS model

1 Introduction

Contagious phenomena are well described in space and time by self-exciting point processes, where
the conditional intensity function is obtained as the sum of the long-term variation component (called
endemic) and the short-term variation one (named epidemic). This kind of models have been widely used
in the literature: infectious disease [10], crime [11], quakes [12], [1]. To model earthquake activity in
space and time accounting both for the endemic (background activity) and epidemic (aftershocks) effect,
the Epidemic-Type Aftershock Sequences (ETAS) model is used. It describes events starting from their
space-time coordinates (and magnitude as mark) and incorporates seismological laws in a mechanistic
approach (e.g. the Omori law) as a natural one in the context of earthquake data. In this paper, we aim at
providing an improved computational framework for further theoretical and empirical developments for
studying and describing epidemic phenomena, where there is a contagious effect of the previous history,
in space an time, and of specific covariates. In particular, we suggest the use of a branching-type model
for earthquake description (the ETAS model) in a regression-oriented version modelling, accounting
also for external covariates, for explaining some of the overall variability of the studied phenomenon
and reducing the unpredictable variability. We provide developments of the Forward Likelihood for
prediction (FLP) method [5] for estimating the ETAS model components, introducing covariates for the
epidemic part, for a more realistic description of observed patterns.

2 Branching point processes and ETAS model with covariates

Branching processes are used to model reproduction phenomena. These models have been recently
considered for the description of different applicative fields: biology [4], demography [9], epidemiology
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[3]. Any analytic space-time point process defined in [0,T ]×W ⊂ R2,T > 0 is uniquely characterized
by its associated conditional intensity function (CIF) [8]:

λ(t,s|Ht) = lim
∆t,∆s→0

E [N([t, t +∆t], [s,s+∆s]|Ht)]

∆t∆s

where Ht is the space-time occurrence history of the process up to time t, ∆t,∆s are time and space
increments, E [N([t, t +∆t], [s,s+∆s]|Ht)] is the history-dependent expected number of events occurring
in the volume {[t, t +∆t)× [s,s+∆s]}. Generally, intensities λ(·) depend on some unknown parameter
θ, so that we have λ(·,θ). The CIF represents the instantaneous rate or hazard for events at time t
and location s given all the observations up to time t, conditioning on the random past history of the
process. In general, the conditional intensity function of the branching model is defined as the sum of
a term describing the large-time scale variation (spontaneous activity or background) and one relative
to the small-time scale variation due to the interaction with the events in the past (induced activity or
offsprings):

λθ(t,s|Ht) = µ f (s)+ τφ(t,s) (1)

with Ht the past history of the process, θ = (φ,µ)′, the vector of parameters of the induced intensity (φ)
together with the parameter of the background general intensity (µ), f (s) the space density, and τφ(t,s)
the induced intensity (or self-exciting component), given by:

τφ(t,s) = ∑
t j<t

νφ(t− t j,s− s j).

The self-exciting component of the model essentially provides a description of the intensity at a
space-time location (t,s) caused by each previous event. In such models, we have to simultaneously
estimate the different components of the intensity function (large-time scale and small-time scale). If
the large-time scale component µ f (s) in (1) is known, the parameters φ can be usually estimated by
Maximum Likelihood method. In applications, the large-time scale component µ f (s) is usually estimated
trough nonparametric techniques, like kernel estimators.

In seismological context, the branching process ETAS model has been introduced [12]. Starting from
model (1), the ETAS conditional intensity function can be written as follows:

λθ(t,s|Ht) = µ f (s)+ ∑
t j<t

g(t− t j|m j)`(s− s j|m j) (2)

with m j the magnitude of the j-th event, g(·) the Omori law for occurrence density of aftershocks in time
and `(·) the spatial distribution, conditioned to magnitude of the generating event. Since the criticality
of the simultaneous estimation of the background intensity and the triggered intensity components of a
Epidemic type model, the FLP approach was developed (see [5], [7]). It is a nonparametric estimation
procedure, used for the large time scale component, based on the subsequent increments of log-likelihood
obtained adding an observation one at a time, to account for the information of the observations until
tk on the next one. That provides a simultaneous estimation of the two parametric components of a
branching-type model, alternating the standard likelihood method, to estimate the parameters, with the
FLP approach, to estimate the nonparametric part. Given the lack of specific open-source tools, the
package etasFLP [7] [6] provides tools to implement this mixed approach for a wide class of ETAS
models for the description of seismic events, developed in the R environment.

In this paper, we propose an additive-multiplicative model for the conditional intensity function of
a space-time point process, incorporating a forward predictive likelihood estimation approach for semi-
parametric intensity function. Starting from the definition provided in eq. (1), we propose to modify
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the offspring component, accounting for a vector of covariates. As proposed by [10] in a context of
infection occurrences, we incorporate the space-time phenomenological laws of the triggering part of the
ETAS model with the effects of covariates. This triggering function is factorized into separate effects of
external information, time and relative location, such that:

λθ(t,s|Ht) = µ f (s)+ ∑
t j<t

exp(η j)g̃(t− t j|m j) ˜̀(s− s j|m j) (3)

where (t j,s j) is the time and location of individual occurrence j, η j = β
′z j is a linear predictor based on

the vector of unpredictable variables z j of each event, and g̃ and ˜̀ are defined as in eq (2), accordingly
modified. In the seismic context, the proposed approach would provide a more general formalism for the
earthquake occurrence in space and time. Indeed, the main idea is that the effect on the future activity
does not depend only on the closeness of the previous events, but also on specific characteristics of the
main event, like magnitude, as usual, and also further information, such as geological features.

3 Application to the Italian earthquakes and comments

We report some of the results of the proposed ETAS-FLP approach with covariates, starting from the
Italian catalogue of the space-time Italian seismicity, from May 5th, 2012 to May 7th, 2016, with 2.5 as
the threshold magnitude (i.e. the lower bound for which earthquakes with higher values of magnitude are
surely recorded in the catalogue). The catalogue reports the usual hypocentral coordinates (longitude,
latitude, depth, time) together with the magnitude of the events, and also some additional information,
such as: the hypocentral uncertainty, the distance from the nearest station (for shallow earthquakes, this
distance should be sufficiently small), a measure of the quality of the location (named rms), the number
of stations that recorded the event (this number is heavily influenced by the magnitude of the event and
strongly influences the accuracy of the location) and the distance from the nearest fault (i.e. the identified
earthquakes sources in that area). Estimating the ETAS model as in eq. (2) by using the FLP approach
and accounting for the epicentral coordinates (longitude, latitude and time) and the magnitude of the
inducing event, results (not here reported) are not completely satisfying, suggesting, as usual, some lack
of fitting mostly due to the triggered component. However, adding also the available covariates, that is
considering the model in eq. (3), the best estimated one includes, together with the magnitude, also the
depth, the distance from the nearest station and the distance from the nearest fault. In particular, the
last two covariates have both a negative effect on the space-time reproducing activity. Diagnostic results
suggest a satisfying fitting, as shown in the Figure 3 (see [2] for the residual description).

The reported results, tough partial and provisional, confirm our intuition reported in previous studies
(e.g. [2]). Indeed, the need of a more flexible model for the space-time triggered component of the ETAS
model is often revealed, although the background seismicity is well described by the FLP estimated in-
tensity. In our opinion, considering external information (such as geological information related to faults
distribution) for the description of spatio-temporal earthquakes is a innovative and promising perspective
of study, even relevant in different fields of research.

Acknowledgments. This paper has been supported by the national grant of the Italian Ministry of
Education University and Research (MIUR) for the PRIN-2015 program “Prot. 20157PRZC4. PI:
G.Adelfio".

METMA IX Workshop 3

123



G. Adelfio et al. A space-time branching process with covariates

6 8 10 12 14 16 18

36
38

40
42

44
46

x−longitude

y−
la

tit
ud

e

0.0

0.5

1.0

1.5

2.0

6 8 10 12 14 16 18

36
38

40
42

44
46

longitude

la
tit

ud
e

−3

−2

−1

0

1

2

3

6 8 10 12 14 16 18

36
38

40
42

44
46

longitude

la
tit

ud
e

−3

−2

−1

0

1

2

3

Figure 1: Output for the estimated ETAS-FLP model with covariates: estimated total intensity together
with the observed points (old in blue and recent in red) and available line-faults (on the left); space
residuals for the model (in the middle), space residuals for the background (on the right).
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Abstract. The objective of the present study is first, the last developments and validation results of
modeling the evolution of wildfires using random spread process. Second, a sensitivity analysis was
conducted to identify the most influential covariates for controlling fire propagation. The model com-
bines the features of a network model with those of a quasi-physical model of the interaction between
burning and non-burning cells, which strongly depends on covariates. The models applied to different
wildfires in Spain, including the different temporal states. In the same way, the possible predictions
for compare the experiments in terms of rate of spread, area and shape of the burn and it is studied
the environmental risk during the fire propagation. Finally, the sensitivity of the model outcomes to
input parameters is modeled. In this work, the idea of random set modeling of fire spread is developed,
including the covariates. Some facts indicating the stochastic nature of fire spread are reviewed. A
brief survey of deterministic and stochastic models of spread and a description of random set models
based on a Markov process called random spread process (RSP) is developed too.

Keywords. Covariates; Environmental Risk; Random Spread Process; Wildfires.

1 Introduction

Landscape patterns are determined by the frequency, intensity and extent of disturbances. Wildfires play
an important role on this regard, because they have the potential to affect severely the forest dynamics
and to produce geohydrological changes. At landscape scale, ignition location and burned area by forest
fires are the result of a complex interaction between climatic factors, topography and land (Moreira et
al., 2011). Studying the rate of spread and the final shape of the burned area is an important task as this
gives insight on whether or not a given wildfire will pose a potential hazard to human life an property
as well as to where its contribution to green house gasses and to particulate matter in the atmosphere is
more likely to have an impact.

To model fire spread, we consider a study area W divided in NG pixels or sites. A question of interest
is: given that a fire has ignited at a given site, which factors influence its spread direction and its final
shape?

Most fire spread models consider the physics of the burning process and include approaches based on
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the physics of fire and in raster spread processes (Bin Sullivan, 2010; Drissi, 2015; Muzy et al., 2008 and
Vorob’ov, 1996). Physicists use concepts and mathematical models based on partial differential equations
and ordinary differential equations to describe fire spread process (Pastor et al. 2003). Parameters of
those equations however do not correspond directly to the parameters intuitively identified as influencing
the fire spread, for example, slope, wind speed, biomass, and relative humidity of the vegetation at the
fire front. The inclusion of covariates in fire spread models is likely to improve model quality (Aragó et
al. 2016; Díaz-Avalos, et al. 2016).

2 Data sets and methods

The data for this project came from two wildfires: The wildfire of Artana, Castellon (Spain) and the
Carcaixent wildfire in Alicante. Figure 1 shows the shape of the burned area for the Artana wildfire at 9
consecutive days (upper panel), the shapes and sizes overlaid (lower panel) . Figure 2 shows the shape
of the burned area for the wildfire in Carcaixent, Alicante (Spain) at five consecutive days (upper panel)
and the shapes and sizes for those days overlaid (lower panel).

For these data sets we consider a model based on a raster approach, where for a given time t, every
pixel is in one of three sets: burned (B), burning at the fire front (F) or within the range of the fire front,
either because the pixel is in the neighborhood set of a burning pixel, or because it can be reached by
sparks for example (N). Note that for t = t +1 some pixels in the complement of B∪F ∪N may join F
or N.

To describe the features of wildfire spread, in this study we use a Markovian random field process
where at a given time t, each cell can be in any of three states: unignited cells (U), either neighboring the
fire front that can be reached by sparks transported by physical forces; burning cells (F); burnt out cells
(B), this is, G =U ∪F ∪B . Conditional on F , the probability that unignited cells ignite is a function the
local conditions through covariate values of the form

log
[

p(xt+1 ∈ F |xt ∈U)

1− p(xt+1 ∈ F |xt ∈U)

]
= Zβ+U(xt) (1)

where Z is a matrix with covariates related to the risk of fire ignition and U(·) is a spatial term that de-
pends on the pixels in F within the neighborhood of xt . The model was fitted using a bayesian approach.
Model results ad future research work are discussed.

3 Acknowledgments

We would like to thank the Environment Department of the Government of Valencia for the access to the
digital map databases.

METMA IX Workshop 2

126



Díaz-Avalos, et al. Modelling wildfires using random spread process with covariates

728000 734000

4
4

2
1

0
0

0

728000 734000

4
4

2
1

0
0

0

728000 734000

4
4

2
1

0
0

0

728000 734000

4
4

2
1

0
0

0

728000 734000

4
4

2
1

0
0

0

728000 734000

4
4

2
1

0
0

0

726000 7340004
4

2
0

5
0

0

726000 734000

4
4

2
0

5
0

0

726000 7340004
4

2
0

5
0

0
726000 734000

4
4

2
0

5
0

0

726000 734000

4
4

2
1

0
0

0

726000 734000

4
4

2
1

0
0

0

726000 734000

4
4

2
1

0
0

0

726000 734000

4
4

2
1

0
0

0

726000 7340004
4

2
0

0
0

0

726000 734000

4
4

2
0

0
0

0

726000 7340004
4

2
0

0
0

0

726000 734000

4
4

2
0

0
0

0

730000 732000 7340004
4
2
0
0
0
0

4
4
2
2
0
0
0

4
4
2
4
0
0
0

730000 732000 734000

4
4
2
0
0
0
0

4
4
2
2
0
0
0

4
4
2
4
0
0
0

Figure 1: Time evolution of a wildfire in Artana, Castellon, Spain, 9 instants (top) and all step-time in
the same Figure (bottom)
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Figure 2: Wildfire in Carcaixent, Alicante, Spain, in 5 instants and the shape of the total burned area.
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Abstract. In recent years, marine litter has become a recognized global ecological concern, although
its distribution and influence on deep-sea habitats are still not well-known. This study focuses on the
analysis of abundance data for litter categories, collected during trawl surveys regularly conducted
at local scale, in the Central Mediterranean. Multivariate abundance data have space-time structure
and come with additional environmental continuous covariates, such as distances to the coastline or
to the nearest harbor. Here marine litter data are modeled in order to estimate the effects affecting the
dynamics of litter assemblages at different spatio/temporal scales. We propose a correlated response
model with latent variables, that proves to be particularly suitable to infer potential environmental co-
variates while controlling for correlation between litter categories and providing a method for residual
ordination. MCMC estimation is implemented within the Bayesian hierachical framework that allows
to integrate environmental and anthropogenic processes into a single model.

Keywords. Bayesian modelling; Ecology; Spatial and spatio-temporal covariance modelling

1 Introduction

Marine litter, defined as any synthetic materials lost, discarded or transported in the marine environment
[1], has become a growing threat that might jeopardize the status of marine ecosystems at global and
regional scale. The sources of marine debris are mainly related to human activities and include either
land- and sea-based origins. In fact, in addition to pollution from ships and fishing activities, these
materials enter the marine environment by rivers, drainage, sewage systems or by wind. The debris
quantity and its distribution on the Mediterranean seafloor are still not well-known although preliminary
studies suggest how its presence may heavily affect populations, trophic interactions and assemblages
of marine living communities [2]. Despite the lack of marine litter data based on systematic monitor-
ing/evaluating campaigns, experimental bottom trawl surveys carried out in the Mediterranean basin in
the last years represent a valuable source of information about the spatial distribution and the composi-
tion of wastes. Litter typologies can be seen as special items caught by the trawl net together with marine
species. While single-species distribution models have been commonly used to explain and predict the
response of different taxa to environmental variation, the analysis at the community-level is still lacking
[7]. Distance-based ordination methods provide insights to describe patterns of diversity and community
composition, but they are deficient in explaining the relative contributions across space and time. Some
innovative approaches that explicitly acknowledge the multivariate nature of species assemblages were
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recently proposed [3, 7]. These approaches share the possibility to model the actual processes that deter-
mine the assemblage of community samples, taking into account for the various sources of correlation
across species. In this study we analyze multivariate litter abundance data using a correlated response
models in the spirit of [4]. This model merges univariate Generalized Linear Models with latent variables
to account for the residual correlation across litter categories, e.g. due to environmental interactions or
unaccounted covariates. Latent variables provide a method for “residual ordination”. They are included
alongside the measured covariates and are interpreted as a device to account for any residual covariation
not explained by the environmental covariates. The whole implementation is performed in a hierarchical
Bayesian framework, that proves to be flexible enough to integrate many data generating processes into
a single model.

2 Materials and methods

2.1 Study area and data

Litter data are collected during experimental trawl surveys conducted from 2013 to 2017 in the North-
Western Ionian Sea as a complementary (voluntary) activity of the international project MEDITS
(MEDiterranean International Trawl Surveys). The study area (GSA 19) covers a total surface of 16,350
km2 at depths between 10 and 800 m. The North-Western Ionian is the deepest sea in the Mediterranean
basin and is characterised by a complex geomorphology and divided in two sectors by the Taranto Valley:
an Eastern sector between the Taranto Valley and the Apulia represented by a broad continental shelf; a
South-Western one (along the Calabria and Sicily) with a very limited shelf and many submarine canyons
located along these coasts, playing an important role in the transport of terrigenous debris from coastal
waters to deeper grounds. In the North-Western Ionian Sea fishing occurs from coastal waters to about
800 m with Gallipoli, Taranto, Crotone and Reggio Calabria representing the most important fisheries
as well as the main harbours. Moreover, an increasing touristic activity is developing along the Ionian
coasts. So, the sea bottoms are here exposed to a strong increase in anthropogenic impact both through
extension of the coastal fisheries to the slope, and due to other coastal and offshore activities. The same
70 depth-stratified hauls are carried out between 10 and 800 m in depth every year (Figure 1A), summing
to 350 hauls in 5 years. Wastes caught during the trawl surveys are classified in 8 categories: plastic,
rubber, metal, glass/ceramic, cloth/natual fibres, processed wood, paper/cardboard, other/unspecified.
The number of collected items for each litter category was scaled to the swept surface unit (1 km2), thus
obtaining density indices (N/km2) for each litter category and survey at every haul location. Litter density
is a semi-continuous zero-inflated non-negative variable. Preliminarily, to investigate factors influencing
the density of litter categories, we consider the depth of the haul as environmental covariate.

2.2 Model-based statistical framework

Densities of litter categories are jointly modeled as semi-continuous zero-inflated multivariate responses
assuming the Tweedie distribution model [6]. The mean density µi j of j-th litter category at the i-th haul
is specified by the following mixture model:

g(µi j) = α1(ti)+α2(si)+β0 j +
p

∑
k=1
β jkXik +z

′
iθ j i = 1, . . . ,350; j = 1, . . . ,8 (1)
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Figure 1: (A) Map of the study region and haul locations; (B) Overall percentages of litter categories;
(C) Overall temporal trend of the litter density

where g(·) is the link function, α1,2(·) are effects adjusting for differences in site and time (year) on
the overall litter density, β0 j is the litter type-specific intercept and β jk is the type-specific regression
coefficient of the k-th covariate (preliminarily, only the depth covariate was considered in this work).
Finally, zi = (zi1, . . . ,ziq)

′ is a q-dimensional vector of latent variables, while θ j = (θ j1, . . . ,θ jq) are
the corresponding litter type-specific loadings. Independent weakly informative N ∼ (0,10) priors were
assumed for all site and time effects, type-specific intercepts, type-specific regression coefficients, latent
variables and loadings. Uniform priors U ∼ (0,30) are adopted for all dispersion and variance parameters
in the model. Inferences for model in Eq. 1 were implemented by the boral package [5] that provides
an interface between R and JAGS [8] for multi-species models with latent variables.

3 Results

Figure 1B reports the overall percentages of litter categories for the study period. As expected, plastic
is the prevalent litter category found in almost 90% of considered hauls. The overall density for all lit-
ter categories shows a negative peak in 2015 with a clear increasing trend for the following two years
(Figure 1C). The model in Eq.1 was fitted with 1 to 3 latent variables and with fixed or random site
and time effects. All model estimates were obtained using 20,000 iterations, discarding the first 5,000
corresponding to the burn-in phase of the algorithm. The Geweke convergence diagnostic and the graph-
ical inspection of the trace provided clear evidence of the convergence of MCMC chains for all model
parameters. As reported in Table 1, the best models in terms of lowest BIC consider random site/year
effects instead of fixed effects. Here we prefer to report results from the model with two latent variables
as it enables to draw a scatterplot of the ordinations, in line with distance-based techniques where two
axes are typically chosen for low-dimensional data visualization (Figure 2). Figures 3A-B show a pos-
itive correlation between plastic and glass litter due to depth. Strong, positive residual correlations are
observed: the plastic is correlated with all other materials except for metal and other/unspecified wastes,
as also shown in Figure 2. Finally, estimated spatial effects represented in Figure 3C, allow to identify
some "hot-spots" assemblages for all litter categories.

Acknowledgments. C. Calculli and A. Pollice were supported by the PRIN2015 project "Environmental
processes and human activities: capturing their interactions via statistical methods (EPHASTAT)" funded
by MIUR - Italian Ministry of University and Research.
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Site/year effect
fixed random

1 LV 8731.59 8387.27
2 LV 8777.11 8434.66
3 LV 8833.30 8486.78

Table 1: Values of the BIC for mod-
els with 1-3 latent variables (LV) and
fixed/random time and site effects
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Figure 2: Residual ordination biplot for
the litter densities based on the posterior
median estimates
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Figure 3: (A) Correlations between litter categories due to the depth environmental covariate; (B) Resid-
ual correlations based on the correlated response model (significant correlations based on 95% credible
intervals excluding zero, have been reported); (C) Predictions of random spatial effects of sites.

References

[1] Galgani, F., Fleet, D., Van Franeker, J., Katsanevakis, S., Maes, T., Mouat, J., Oosterbaan, L., Poitou, I.,
Hanke, G., Thompson, R., Amato, E., Birkun, A., Janssen, C. (2010). Marine Strategy Framework Directive,
Task Group 10 Report: Marine Litter. In JRC Scientific and Technical Reports (ed. N. Zampoukas). Ispra:
European Commission Joint Research Centre.

[2] Gall, S.C., Thompson,R.C. (2015). The impact of debris on marine life. Marine Pollution Bulletin 92, 170–
179.

[3] Hui, F.K.C., Taskinen, S., Pledger, S., Foster, S. D., Warton, D. I. (2015). Model–based approaches to uncon-
strained ordination. Methods in Ecology and Evolution 6, 399–411.

[4] Hui, F. K. C. (2016). boral – Bayesian Ordination and Regression Analysis of Multivariate Abundance Data
in R. Methods in Ecology and Evolution 7, 744–750.

[5] Hui, F. K. C. (2017). boral: Bayesian Ordination and Regression AnaLysis. R package version 1.4.

[6] Jørgensen, B. (1997). The Theory of Dispersion Models. Chapman and Hall. London

[7] Ovaskainen, O., Tikhonov, G., Norberg, A., Guillaume Blanchet, F., Duan, L., Dunson, D., Roslin, T. and
Abrego, N. (2017). How to make more out of community data? A conceptual framework and its implemen-
tation as models and software. Ecology Letter 20, 561–576.

[8] Plummer, M. et al. (2003). JAGS: A program for analysis of Bayesian graphical models using Gibbs sam-
pling. Proceedings of the 3rd International Workshop on Distributed Statistical Computing (DSC 2003)
March, 20–22. Vienna, Austria.

METMA IX Workshop 4

132



CircSpaceTime: an R package for spatial and spatio-temporal modeling
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Abstract. CircSpaceTime is going to be a new R package that eventually will implement most of the
models recently developed for spatial and spatio-temporal interpolation of circular data. Such data
are often found in applications where, among the many, wind directions, animal movement directions,
and wave directions are involved. To analyze such data we need models for observations at locations
s and times t, so-called geostatistical models providing structured dependence which is assumed to
decay in distance and time. For example for wave directions in a body of water, we imagine a wave
direction at every location and every time. Thus, the challenge is to introduce structured dependence
into angular data. The approach we take begins with models for linear variables over space and time
using Gaussian processes. Then, we use either wrapping or projection to obtain Gaussian processes for
circular data. Altogether, this package will implement in its first version the proposals by Mastrantonio,
Jona Lasinio and Gelfand. The models are cast as hierarchical models, with fitting and inference within
a Bayesian inference framework. All procedures are written using Rcpp and whenever possible, the
computation is parallelized. We use a wave direction dataset as a running example.

Keywords. Circular data; Bayesian modeling; Computational statistics; R packages.

1 Overview

CircSpaceTime is an R package implementing spatial and spatio-temporal models for circular data, yet
to be released. As a first step we start with a purely spatial setting, as initially introduced in [12].
There are different approaches to specify valid circular distributions, see for example [11]. Here we
focus on two methods that allow to build a circular distribution starting from a linear one, namely the
wrapping, and the projection. Under both methods, the resulting distribution has a complex functional
form but introducing a suitable latent variable, the joint distribution of observed and latent variables are
easy to handle in a fully Bayesian framework.
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2 Defining circular processes

The wrapping approach Let Y ∈ R be random variable defined on the real line (linear random vari-
able) with probability density function (pdf) fY (·|ψ), where ψ is a generic vector of parameters. We can
obtain a circular random variable using the following transformation:

Θ = Y mod 2π ∈ [0,2π). (1)

The pdf of Θ is

fΘ(θ|ψ) =
∞

∑
k=−∞

fY (θ+2πk|ψ). (2)

Between Y and Θ there is the following relation: Y = Θ+2πK, where K is called the winding number.
Equation (2) wraps fY (·|ψ) around the unit circle and Θ is called the wrapped version of Y with period
2π, e.g. if Y is normally distributed, then Θ follows a wrapped normal (WN) distribution. Notice that
the wrapping approach preserves many properties of the distribution of the linear variable, for example
continuity at the origin: fΘ(0|ψ) = ∑∞

k=−∞ fY (0+ 2πk|ψ) = ∑∞
k=−∞ fY (2π+ 2πk|ψ), we have then that

∑∞
k=−∞ fY (2π+2πk|ψ) = limθ→2π ∑∞

k=−∞ fY (θ+2πk|ψ) as long as fY (θ+2πk|ψ) is continuous in 2πk
for all k. It is not easy to work directly with equation (2), since it requires the evaluation of an infinite sum.
Following [6], if we consider K as (latent) random variable we can see that fΘ,K(θ,k|ψ)= fY (θ+2πk|ψ),
i.e. fY (θ+ 2πk|ψ) is the joint density of (Θ,K), and a marginalization over K gives equation (2). The
conditional distribution of K, needed for the implementation of the MCMC, is easy to handle since it is
proportional to : fY (θ+2πk|ψ). It is then generally easier to work with the joint density of Θ,K|ψ, with
respect to the one of Θ|ψ, since the former does not require the evaluation of the infinite sum.
The wrapping approach can be easily extended to a multivariate setting [12]. Let Y = (Y1, . . . ,Yp)

′ be a
p-variate vector with pdf fY(·|ψ), then Θ= (Θ1, . . . ,Θp)

′, with Θi =Yi mod 2π ∈ [0,2π) that is a vector
of circular variables. Extending the univariate approach, we can easily find that the full conditional of
K is proportional to fY(θ+ 2πk|ψ) and the joint density of (Θ,K) has a multivariate functional form.
Here again it is easier to treat K as a latent variable.

The projection approach Let Y = (Y1,Y2) be a bivariate vector of linear variables with pdf fY(·|ψ).
The unit vector U = Y

||Y|| represents a point over the unit circle and the associated angle Θ, where

U1 = cos(Θ) and U2 = sin(Θ), is a circular random variable; we have then tan(Θ) = Y2
Y1

= U2
U1
. Since the

period of the tangent is π, inversion of this function, to obtain Θ, requires some care. A common choice
is the atan∗, formally defined in [11], pag. 13, that takes into account the signs of Y1 and Y2 to determine
the right portion of the unit circle where Θ is located. Between Θ and Y the following relation exists Y =[
Y1
Y2

]
= R

[
cosθ
sinθ

]
= RU, with R = ||Y||. The pdf of Θ|ψ is fΘ(θ|ψ) =

∫
R+ r fY((r cos(θ),r sin(θ))′|ψ)dr.

The integral in this equation is not easy to solve and, even when a closed form exists, the resulting pdf
has a complicated functional structure. The joint density of Θ,R|ψ is fY((r cos(θ),r sin(θ))|ψ), and if
Y∼ N2(µ,Σ) then fΘ,R(θ,r|ψ) = rφ2 ((r cos(θ),r sin(θ))′|µ,Σ) .
The projection approach can be easily adapted to obtain a distribution for multivariate circular vari-
able [16]. If Y is a 2p−variate linear variable, a p−variate vector of (projected) circular variables is
obtained with the following transformation: Θi = atan∗

(
Y2i

Y2i−1

)
, i = 1, . . . , p. The pdf of Θ|ψ, where

Θ= (Θ1, . . . ,Θp)
′, is

fΘ(θ|ψ) =
∫

R+
· · ·

∫

R+

p

∏
i=1

ri fY(y|ψ)dr1 . . .drp, (3)
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where ri = ||(y2i−1,y2i)
′|| and, in equation (3), y is a function of θ and r = (r1, . . . ,rp).

In the multivariate case, as in the univariate one, it is generally easier to work with the joint density of
Θ,R|ψ (the integrand in (3)) than the one of Θ|ψ.

Spatio-temporal processes for circular variables A stochastic process can be defined through its fi-
nite dimensional distribution, i.e. the distribution of an n−dimensional realization, that is a multivariate
pdf [10]. Starting from a distribution for linear variables, we can use the wrapping or the projection
approach to obtain circular distributions. Then from an n−dimensional realization of a linear process,
we can obtain an n−dimensional realization of a circular one. More precisely, let Y(s) ∈ Rp, with
s ∈ S ⊂ Rd , be a p−variate stochastic process, defined over a d−dimensional domain, and suppose that
an n−dimensional realization of the process Y(s), y, has pdf fY(·|ψ).
Wrapped circular process Let p = 1 and let y = (y(s1), . . . ,y(sn)) be the n−dimensional realization of
Y(s). If we apply the transformation (1) to each component of y, we obtain a vector of dimension n of
wrapped circular variables: θ = (θ(s1), . . . ,θ(sn))

′. [12] show that the vector θ is the n−dimensional
realization of the circular process Θ(s) = Y(s) mod 2π, with Y(s) = Θ(s)+2πK(s).
Projected circular process Let p= 2, then Y(s)= (Y1(s),Y2(s))′ is a bivariate process and y=(y(s1), . . . ,y(sn))

′,
its finite-dimensional realization, is a vector of bivariate variables, i.e. y(si) = (y1(si),y2(si))

′ ∈ R2. The
projected circular process is obtained as Θ(s) = atan∗

(
Y2(s)
Y1(s)

)
, i.e. we apply this transformation to the

process Y(s) [16]. The finite dimensional realization of the circular process is θ = (θ(s1), . . . ,θ(sn))
′,

where θ(si) = atan∗
(

y2(si)
y1(si)

)
, i = 1, . . . ,n.

For both processes, we assume Y(s) =µ+ω(s)+ε(s). where with µ is a mean term, ω(s) is a Gaussian
process and ε(s) is the nugget effect. For the wrapped approach Y(s) is a univariate process, while under
the projected it is bivariate.

3 Implementation details

Model parameters are estimated using a MCMC algorithm involving Gibbs sampler and, when necessary,
we adopt a Metropolis within Gibbs step. It is well known that the MCMC tends to mix really slow ([1])
when latent variable are involved. To speed up the convergence, we try to find an optimal proposal
distribution for the Metropolis step using the algorithm described in [15], page 258. With the goal of
speeding up the MCMC convergence, is suggested to decrease the dimension of the parameters space,
that is, do as much marginalization as possible ([2]).The core estimation is based, mostly, on loops with
thounsands iterations. To improve performances [17] we implemented everything in C++ and using
Rcpp package we can simplify the integration between C++ and R codes [8]. In particular we used the
RcppArmadillo package [9] that implement the Armadillo matrix library for it simplicity and elegance
[7], although the RcppEigen is a bit faster [3]. For a fast multiple chain estimations we used doParallel
package [14].

4 Conclusions and future developments

At present the package implements the spatial wrapped Gaussian and the Projected Gaussian processes.
The authors hope to be able to present the spatio-temporal processes at the conference.
The next step will be to include the Hidden Markov models approach proposed in [13, 4, 5] in a set of
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papers published over the last few years focusing on spatial and spatio-temporal modeling and classifi-
cations. These set of models will be estimated in a likelihood approach as originally proposed by their
authors.
Acknowledgements The authors are partially supported by the MIUR-PRIN grant EphaStat (20154X8K23-
SH3).
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Abstract. Prediction of a spatial variable at an unsampled location can be addressed through the
kriging methodology. Furthermore, the resulting predictor can incorporate data from secondary va-
riables, correlated with the target one, when using cokriging techniques. These procedures demand
characterizing the multivariate dependence structure, which is not an easy task. To simplify the pre-
vious issue, a nonparametric kernel predictor will be introduced in the current work, designed to
include data from the target variable and auxiliary ones. The asymptotic unbiasedness of the new
approach will be proved, together with the negligibility of the mean squared prediction error for large
samples. A bootstrap mechanism will be proposed for approximation of the aforementioned error,
adapted to resample data from a multivariate process. For the choice of the bandwidth parameters
involved, balloon selectors will be suggested. We will also deal with the estimation of the remaining
unknown terms in the kernel predictor, by proceeding through parametric and nonparametric tech-
niques. Simulation studies will be developed in different scenarios to check the performance of the new
methodology for prediction. Finally, the nonparametric approach will be applied to a real data set to
illustrate its practical implementation.

Keywords. Bandwidth parameter; Cokriging; Covariogram; Kernel method; Prediction.

1 Introduction

The kriging methodology allows the prediction of a spatial variable at an unsampled location from the
available data [1, 5]. In particular, when auxiliary variables have also been observed, correlated with
the target one, the cokriging techniques [11] may be applied, with the advantage that they have been
designed to incorporate the information provided by the whole data set, aiming at predicting the value of
the main variable. A brief summary of this methodology will be provided below.

Let us assume that {Z(s) = (Z1(s), ...,Zp(s))/s ∈ D ⊂ IRd} is a p-variate random process, so that Zi

can be modeled as Zi(s) = µi(s)+Yi(s), for i = 1, ..., p, where µi is the deterministic trend and Yi is a
second-order stationary random process with zero mean. Then, it follows that:

(i) E[Zi(s)] = µi(s), for all s ∈ D.

(ii) Cov[Zi(s),Zi′(s′)] =Ci,i′(s− s′), for all s,s′ ∈ D and for all i, i′.
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For i 6= i′, Ci,i′ represents the cross-covariogram between Zi and Zi′ , whereas Ci,i is the direct covariogram
of Zi. From (ii), one has that Var[Zi(s)] =Ci,i(0) = σ2

i , for all s and i.

Z1 will be taken as the variable of interest, while the remaining ones will be considered as secon-
dary variables. Then, suppose that Zi is observed on the set Si = {si,1, ...,si,ni} of ni > 0 locations, for
i = 1, ..., p. A cokriging predictor for Z1 at an unsampled location s can be constructed as follows:

Ẑ1(s) = ∑
i, ji

λi, jiZi(s ji) (1)

where the parameters λi, ji would be derived by minimizing E
[(

Ẑ1(s)−Z1(s)
)2
]
, subject to the unbiased-

ness condition, namely, µ1(s) = E
[
Ẑ1(s)

]
= ∑i, ji λi, jiE [Zi(s ji)].

The resulting λi, ji are dependent on functions Ci,i′ , whose estimation is not an easy task [6]. Indeed,
p2+p

2 covariograms must be characterized, satisfying some constraints, and the adequateness of the fitted
functions may not be properly checked through the cross-validation techniques [9]. In addition, the data
correlation level, among other factors, affects the accuracy of the predicted values [12].

In view of the above, in the current research, we propose a nonparametric alternative for prediction
in this setting, designed to avoid the aforementioned problems. Our idea generalizes the nonparametric
approach [8], based on predicting the value of the target variable at s from the data collected for Z1 as
given below:

Ẑ1(s) = ∑
j1

Kd

(
s−s1, j1

h(s)

)

∑ j1 Kd

(
s−s1, j1

h(s)

)Z1(s1, j1)

where Kd represents a d-variate symmetric kernel function and h(s)> 0 is the bandwidth parameter, for
each s.

Now, we suggest incorporating the whole observed values through a weighted average, whose weights
account for the correlations between the target variable and each of the secondary ones in the following
manner:

Ẑ1(s) = ∑
i, ji

pi, ji(s)
(

µ1(si, ji)+ sign(C1,i(0))
σ1

σi
(Zi(si, ji)−µi(si, ji))

)
(2)

with:

pi, ji(s) =
K1

(
C1,i(0)2−σ2

1σ2
i

hi

)
Kd

(
s−si, ji
h(s)

)

∑i, ji K1

(
C1,i(0)2−σ2

1σ2
i

hi

)
Kd

(
s−si, ji
h(s)

)

where sign(x) stands for the sign of a real value x and hi denotes a bandwidth parameter, for each i. To
avoid the border effects in the above predictor, boundary kernels could be used instead of symmetric
ones.

Predictor (2) satisfies good properties, as it is asymptotically unbiased and the mean-squared predic-
tion error converges to zero as the sample sizes ni increase, under certain hypotheses. For instance, if a
random design is assumed for the spatial locations, the underlying density should be sufficiently smooth,
although the validity of the aforementioned properties could also be extended to deterministic designs.
In addition, the covariograms Ci,i′ will be required to admit a number of derivatives in a neighborhood
of 0. However, specification of the dominant terms of the mean-squared prediction error becomes rather
cumbersome. Thus, we propose using instead a bootstrap approach for approximation of this error in
practice, as the one introduced in [2], but adapted to resample from multivariate data.
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For selection of the bandwidth h(s), assume that the kernel density Kd is compactly supported,
namely, that Kd(y) = 0, for all y ∈ IRd such that ‖y‖ ≥ ad , for some ad > 0. Then, h(s) could be se-
lected by using the balloon approach [10] and it can be taken as the m-th percentile (for instance, m equal
to 10% or 20%) of the values a−1

d ‖s− si, ji‖, for each s.

Regarding the choice of hi, suppose that the correlation is considered significant if
Corr[Z1(s),Zi(s)]2 > b, for some b such that 0 < b < 1 (for instance, b equaling 0.8 or 0.9). The balloon
estimation would enable the selection of hi as a−1

1 σ2
1σ2

i (1−b).

Implementation of predictor (2) also requires estimation of the remaining unknown terms, dependent
on the trend and on the covariogram functions. These issues can be addressed in a variety of ways,
according to the hypotheses that are assumed from the underlying random process. In addition, para-
metric or nonparametric approaches can be used to derive the necessary estimates. Application of the
parametric methodology is easier but it can be affected by misspecification of the selected models. Thus,
nonparametric alternatives will also be suggested instead, which can be even employed in practice in
combination with the parametric approaches.

The new prediction methodology must provide accurate results for gaussian data, similarly as could
be expected for the cokriging predictor (1). However, the latter one demands characterization of the
whole direct and cross-covariograms. In addition, the resulting functions must be appropriately fit to be
valid for prediction, as well as satisfy a number of restrictions due to the underlying dependence among
them, unlike what happens to predictor (2). Indeed, our proposal only involves terms dependent on the
covariogram functions of the form C1,i(0) or Ci,i(0)=σ2

i , thus simplifying their practical implementation.
This aim can be addressed through a parametric fit [4] or a nonparametric mechanism, based on the
method of moments [3] or on the application of the kernel method [7].

Under isotopy, predictor (2) can be expressed in a simpler way. With this aim, consider that Zi is
observed on the set Si = S = {s j}n

j=1 of n locations, for all i = 1, ..., p. The kernel-type predictor of Z1
at location s would then be given by:

Ẑ1(s) = ∑
j

p1, j(s)Z̃1(s j)

with:

Z̃1(s j) = µ1(s j)+∑
i

p2,i

(
sign(C1,i(0))

σ1

σi
(Zi(s j)−µi(s j))

)

p1, j(s) =
Kd

(
s−s j
h(s)

)

∑ j Kd

(
s−s j
h(s)

) , p2,i =
K1

(
C1,i(0)2−σ2

1σ2
i

hi

)

∑i K1

(
C1,i(0)2−σ2

1σ2
i

hi

)
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Abstract. Wildfires, particularly in Portugal, are a relevant public policy issue due to the significant
economical and social damage they cause. Most wildfires are extinguished upon ignition and do not
have significant effect. However, it is generally an established fact that a small number of fires cause
most of the damage, often expressed by the phrase "1% of the fires do 99% percent of the damage"
[4]. Therefore, It is very important to understand the causes of extreme fires, their spatial distribution
as well as predicting the onset of a possible extreme wildfires. Probability maps indicating where ig-
nition is most likely to take place and the consequent fire scar sizes are very important administrative
tools in managing wildfires. In this talk, we will define the concept of probability maps for wildfires, de-
scribe different types of data that are commonly available and the consequent different spatio-temporal
modeling strategies using Bayesian hierarchical methods [1].

Keywords. Wildfires, Point processes, Spatio-temporal models, Bayesian hierarchical models.

1 Introduction

Vegetation fires are inherently random in the timing of their location and occurrence, in the detailed be-
havior of each individual event, and in the particularities of their effects on soils, water, flora, fauna, and
air. Therefore, substantial efforts have been directed towards statistical modeling of several fire-related
processes ([1]). One important fire-related process is fire likelihood or fire danger, which deals with
pre-fire events and aims at predicting the probability of fire occurrence and the extent of area burned over
a specific spatial area and temporal period, conditional on a fire occurrence. Data sources coming from
satellite images and ground sources are point referenced and therefore are more suited in understanding
the spatial point patterns of fire incidences as well as fire sizes. Ideally, the data on point patterns, should
be treated as a realization of a spatio-temporal marked point process, discrete in time and continuous
in space. Typically such point processes are modeled by marked Poisson point processes and the non-
homogeneous intensity function together with fire size distribution of this process become the focal point
of the study ([2]). Typically Log Gaussian Cox processes are used for modeling point patterns whereas
a variety of models, among which the generalized Pareto distribution are often employed for modeling
large fire sizes and extreme value theory is the natural inferential tool to quantify the large fire danger.
Further simplifications, at the cost of additional loss of information, can be achieved by transforming the
point pattern data into fire incidence data. The marks, namely sizes of the individual fires, can be aggre-
gated into burned area fraction of each areal unit during the temporal units. The spatial support for the
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analysis is a regular grid, and not individual fire events and consequently large fires that spanned more
than one grid cell will be subdivided and have their area distributed by the corresponding cells. Grid
cell records for each year represent the binary data indicating the presence of at least one fire together
with the corresponding burned area fraction of the grid cell. We call these binary data the fire incidence
data. The burned area fraction, expressed in terms of the percentage of grid size burned each year, is
used as covariate information. Information from fire severity and maps of state of vegetation (green/dry)
and cumulated biomass at the end of spring can be used to produce annual fire risk maps as in [3], by
incorporating the strong spatial and temporal dependence that exists in the data. We will consider for the
purpose a Markovian structure for the fire incidence data. The objective of this model is to capture, as
much as possible, the strong spatio-temporal dependence structures in the fire incidence data, allowing
at the same time for the introduction of any type of dynamic explanatory variables in the model. This
will be achieved through Bayesian hierarchical modeling techniques and simulation-based inference.

Fire danger can then be defined, depending on the format of the data and the consequent model used
for describing the data:

(i) If one bases inferences on the fire incidence or fire frequency data over areal units, then fire danger
can be defined as the probability of fire in any year and in any areal unit given the observed fire incidences
up to that year.

(ii) If fire severity is included in the definition, than fire danger can be defined as a fire that ignites at
a location s will have consequent fire size above a high threshold.

2 Objectives, data structure and methods

The objective of this research is to obtain fire risk maps for 2018 based on satellite data of fire incidence
and fire sizes in Portugal from 1988 to 2017. For fire incidence, probability maps are constructed based
on data at a grid level cell of 4km2. For extreme fires, probability maps are constructed at county level,
based on marked point reference data.

All the models were run using R-INLA (htt p : //www.r − inla.org/)

2.1 Markov model for fire incidence data

Let T be the number of years under study and N the total number of grid cells. Let Y (i, t), t = 1, ...,T, i =
1, ...,N, represent the indicator variable of fire incidence. We assume a Markovian structure for Y as
in [3] where the spatial dependence is introduced in the link functions for the transition probabilities
through an ICAR model. For each cell, percent of forest and shrubland cover and a cumulative Daily
Severity Rating (DSR, a meteorological rating for assessing the risk of fires by using the forest fire index)
obtained at the end of June, enter as covariates. Also, for each cell, the time since last fire enters as a
covariate in the linear predictor for the transition probability from state 0 (no fire) at time t to state 1
(fire) at time t + 1, with a regionally dependent coefficient. For the linear predictor for the transition
probability from state 1 (fire) at time t to state 1 (fire) at time t + 1, we use, as covariate, the percent
burned area at time t again with a regionally dependent coefficient.
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2.2 Model for extreme fires

Let v be a fire size assumed extreme (say v = 1000 ha) and u a fire size such that excess fires above it can
be modelled by a generalized Pareto distribution(GPD). The objective here is to obtain the probability
that at least on fire size above v hectares will be observed in year t at a county A.

Consider the data of all the locations and fire scares above u for every year t for every county A. Let
st be the set of locations of fire scares in year t and x(st) the set of excess fire sizes above u and y(st)
a vector of covariates (similar covariates as used in the previous model). We assume that for every t,
(st ,x(st)) is a marked point process, where the points follow a log Gaussian Cox process with intensity
given by λ(st ,x(st)) = λ(st) fst (x) and the marks follow a generalized Pareto distribution with density
fst (x). Hence the probability that at least one fire of size above v will be observed in year t in a region A
is given by

1− exp
{

−
∫

s∈A

∫

x>v
λ(s,x)dsdx

}
.
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Abstract. The aim of this work is to provide a nonparametric resampling method for approximating
the (unconditional) probability that a spatial variable exceeds a prefixed threshold value, from the
available data. Then, a risk map of the target variable can be obtained, which is of great applicability
in the environmental setting, for instance, to assess the contamination risk by any pollutant. Other
approaches suggested for the same issue require stationarity from the random process or relax this
hypothesis to admit the presence of a deterministic trend, although all of them assume constant vari-
ance throughout the observation region. However, our proposal has been designed to be valid under
heteroscedasticity of the spatial process. For this purpose, local linear estimates of the trend, variance
and variogram functions must be derived, where the two latter ones are corrected to reduce the bias
due to the use of residuals. These estimates are employed in the implementation of a bootstrap proce-
dure, whose replicates allow the approximation of the aforementioned risk. The performance of this
mechanism is checked through numerical studies with simulated and real data.

Keywords. Heteroscedasticity; Local linear regression; Resampling method.

1 Introduction

The current work is focused on the construction of a risk map of threshold-exceeding probabilities,
from the available data. This kind of results has important applications, especially in the environmental
field, where it enables the assessment of the contamination risk by any pollutant and the subsequent
decision making. Thus, write {Y (x) : x ∈ D ⊂ Rd} for a spatial process and suppose that n data, Y =
(Y (x1), . . . ,Y (xn))

t , have been collected at the respective locations x1, . . . ,xn. Usually, the aim is the
estimation of:

P(Y (x0)> c|Y) ,

which represents the conditional probability or risk that Y (x0) exceeds a fixed threshold value c, at each
x0 ∈ D, for some c > 0. Different approaches have been provided in the statistics literature to deal
with the conditional risk estimation, such as indicator kriging [6], Markov chain modeling [8] or more
recent techniques, as those based on compositional data analysis [10]. Since these methods require the
selection of parametric models that can be affected by misspecification, alternative options are provided
by the nonparametric procedures, as the kernel-based approach proposed in [5]. However, assessment of
the long-term risk [7] and other problems demand knowledge of the process distribution, under certain
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general conditions. Then, the unconditional probability is needed instead:

rc(x0) = P(Y (x0)> c) , (1)

and the previous methods would not be appropriate. A bootstrap geostatistical technique for the estima-
tion of the unconditional risk was suggested in [4]. This approach can be applied to spatial processes
with a deterministic trend, although it requires homoscedasticity, as all the aforementioned procedures.
Thus, our research goes a step further, aiming to provide a nonparametric mechanism for approximation
of the unconditional risk, which is valid for heteroscedastic spatial processes.

Suppose that the spatial process Y can be modeled as:

Y (x) = µ(x)+σ(x)ε(x), (2)

where µ and σ2 denote the deterministic trend and variance functions, respectively, and ε is a second-
order stationary process, with zero mean, unit variance and correlogram ρ(u) = Cov(ε(x) ,ε(x+u)).
The semivariogram of ε is given by γ(u) = 1

2Var(ε(x)− ε(x+u)) = 1−ρ(u).

The specification of the small-scale variability of the process Y requires the estimation of the variance
and the correlogram (or the variogram) of the error process ε, since:

Cov(Y (x) ,Y (x+u)) = σ(x)σ(x+u)ρ(u).

Consequently:
Σ= DRD,

where Σ and R denote the covariance matrices of Y and ε = (ε(x1), . . . ,ε(xn))
t , respectively, and D =

diag(σ(x1), . . . ,σ(xn)). The (local) variogram of the heteroscedastic spatial process is given by:

2γY (x,x+u) = (σ(x)−σ(x+u))2 +2σ(x)σ(x+u)γ(u).

Under the general spatial model (2), a resampling approach will be proposed for approximation of
(1). The new methodology extends the bootstrap procedure developed in [4] for the homoscedastic case,
which is modified to adequately reproduce the variability of the data.

2 Main results

In what follows, we describe the suggested bootstrap procedure. Firstly, nonparametric estimators of the
trend, variance and variogram functions must be obtained, which will be respectively denoted by µ̂, σ̂
and γ̂. Starting by the spatial trend, its local linear estimator is given by:

µ̂(x) = et
1
(
Xt

xWxXx
)−1 Xt

xWxY = st
xY, (3)

where e1 = (1,0, ...,0)t ∈ Rd+1, Xx is a matrix with i-th row equal to (1,(xi−x)t),
Wx = diag{KH(x1−x), . . . ,KH(xn−x)} , KH(u) = |H|−1K(H−1u), K is a d-dimensional kernel func-
tion and H represents the bandwidth matrix.

Then, the natural procedure to obtain the estimators σ̂ and γ̂ consists of first removing the trend and
then estimating the variance and the variogram from the residuals r = Y−SY, where S is the smoother
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matrix, whose i-th row is equal to st
xi

. However, the direct use of the residuals tends to produce an
underestimation of the small-scale variability of the process (e.g. [1], Section 3.4.3). Indeed:

Var(r) =Σ+SΣSt −ΣSt −SΣ=Σr.

Equivalently, the covariance matrix of the (unobserved) standardized residuals ε̃= D−1r is as follows:

Var(ε̃) = R+B =Σε̃, (4)

with:
B = D−1 (SΣSt −ΣSt −SΣ

)
D−1. (5)

From (4), it is easy to see that:
Var

(
ri/
√

1+bii

)
= σ2(xi),

Var (ε̃(xi)− ε̃(x j)) =Var (ε(xi)− ε(x j))+bii +b j j−2bi j,

where ri is the i-th term of vector r, bi j is the (i, j)-th element of matrix B and ε̃(xi) = r(xi)/σ(xi) is the
i-th component of ε̃.

From these results, an iterative algorithm is designed for the joint estimation of the variance and the
variogram. This method is similar to the one described in [3], although we propose using the “exact”
bias matrix (5) instead of an approximation to it. The specific steps are summarized below:

1. Estimate the trend through (3), compute the residuals r and obtain a pilot (uncorrected) estimate
of σ2 by linear smoothing of

(
xi,r2

i
)
.

2. Compute the estimated standardized residuals ε̂= D̂−1r, with D̂ = diag(σ̂(x1), . . . , σ̂(xn)), and de-
rive an estimator γ̂ε̂ of the error semivariogram by linear smoothing of

(
||xi−x j||,(ε̂(xi)− ε̂(x j))

2
)
,

where ε̂(xi) is the i-th component of ε̂.

3. Obtain Σ̂ε̂ from γ̂ε̂ and take R̂ = Σ̂ε̂ as a pilot estimate of the correlation matrix.

4. Form Σ̂= D̂R̂D̂ and B̂ = D̂−1
(
SΣ̂St − Σ̂St −SΣ̂

)
D̂−1.

5. Derive an updated estimate σ̂2 of the variance by linear smoothing of
(
xi,r2

i /(1+ b̂ii)
)

and take
D̂ = diag(σ̂(x1), . . . , σ̂(xn)).

6. Recalculate ε̂ = D̂−1r and approximate the error semivariogram by linear smoothing of(
||xi−x j||,(ε̂(xi)− ε̂(x j))

2− b̂ii− b̂ j j +2b̂i j
)
, where b̂i j is the (i, j)-th element of matrix B̂.

7. Obtain a new estimate R̂ of the correlation matrix and repeat steps 4-7 up to convergence.

The previous estimates allow us to implement a bootstrap replicate of the heteroscedastic process Y ,
from the available data, and then use it for risk estimation, at a given location x0 ∈ D, as follows:

1. Use the previous algorithm to obtain both estimates R̂ (in the final step) and Σ̂ε̂ (in step 3), as well
as their corresponding Cholesky factorizations R̂ = LLt and Σ̂ε̂ = Lε̂Lt

ε̂.

2. Compute the “independent” variables e=L−1
ε̂ ε̂ and center them to derive an independent bootstrap

sample of size n, denoted by e∗.

3. Construct the bootstrap errors ε̂∗ = (ε̂∗(x1), . . . , ε̂∗(xn))
t by taking ε̂∗ = Le∗.
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4. Derive the bootstrap replicas Y∗ = (Y ∗(x1), · · · ,Y ∗(xn))
t , with Y ∗(xi) = µ̂(xi)+ σ̂(xi)ε̂∗(xi), for

i = 1, . . . ,n.

5. Predict the value of Y (x0) by Ŷ ∗(x0) = µ̂(x0) + σ̂(x0)ε̂∗(x0), with ε̂∗(x0) obtained through the
application of the simple kriging approach on ε̂∗.

By repeating this scheme a large number of times, an estimate of the target risk (1) at x0 is provided
by the proportion of values Ŷ ∗(x0) exceeding the fixed threshold c.
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Abstract. In the last decade, research on traffic accidents is increasing and expanding with the de-
sign of a wide variety of methodologies and techniques. In order to properly capture the distribution
of accidents within an area of interest, spatial models have become required, focusing on two main
objectives: the detection of zones of high crash risk (hotspots) and the explicability of accidents inci-
dence from a set of related variables of different nature. These include geometric features and traffic
information of the roads being studied, but also socioeconomic and demographic issues.
Most of the studies on traffic accidents have been developed over an areal region subject to a certain
administrative division. However, recent studies have employed the specific network structure of roads
of the region of interest, which are known as linear networks in the field of spatial statistics. These are
like graphs made of edges and vertex that accurately represent the geographical space where accidents
take place.
In this work, a collection of accidents registered by the Local Police Department of the city of Valencia
(Spain) in the period 2005-2017 are projected to a linear network, which represents a zone of this city
with more than 30 km of road structure. Furthermore, the linear network has been endowed with a
direction according to the traffic flow. Several models including various road features as variables
and different definitions of neighbourhoods have been analyzed and compared with explanatory and
methodological objectives.

Keywords. Spatial Statistics; Linear Networks; Crash Data.

1 Introduction

In the last decade research on traffic accidents is increasing and expanding with the inclusion of a wide
variety of statistical methodologies and techniques. The use of spatial lag models considering a rate of
interest as the response variable has been successfully used since decades ago and applied to several kinds
of geographic events, including traffic accidents [1]. However, many other models of different nature and
scope have appeared recently to treat traffic accidents, some of which are now briefly summarized. In
[2] traffic accident counts were modelled at the ward level employing non-spatial (negative binomial)
and spatial methods based on Bayesian hierarchical models. In [3] the influence of road networks in
the incidence of pedestrian-vehicles crashes was analyzed by developing a measure (integration) which
reflects the accessibility of a node in the network, depending on its neighbourhood geometry. Finally, in
[4] crash frequency at the county-level was explored with a spatial Bayesian model which included road
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and traffic-related factors, but also demographic and socioeconomic information of the counties being
studied. This work focused on the distinction of two types of exposure variables: population and average
daily vehicle miles travelled per county.

2 Data

2.1 Accidents dataset

A total of 4548 traffic accidents registered by the Police Department of the city of Valencia (Spain) during
the years 2005 to 2017 and located in the Eixample District of this city have been employed. According
to their reported coordinates, these accidents were projected to a linear network representing the traffic
roads of the Eixample District of Valencia (Figure 1 contains this linear network and a description of the
counts observed at the road level).

Figure 1: Accident counts at the road segment level for the Eixample District in the period 2005-2017.

2.2 Network structure and related variables

A linear network composed of 279 vertex and 444 edges, which represented a total length of 33.56 km
was used for the analysis. Some parts of this network were previously simplified, including the slight
modification of highly complex intersections and the removal of pedestrian streets. For the purpose of
improving the analysis, the network was endowed with a direction according to the traffic of this district
of Valencia as of the end of December of 2017.

Several factors that could influence in vehicle collisions, which are related to public infrastructures
and road characteristics were considered at the edge level: parking lots, bus stops, traffic lights, number
of lanes in the road, presence of a bus lane (binary), the road type (binary, main or not), and the number
of roads that directly connect to the edge (number of neighbours). As the network of study represents a
quite little and homogeneous population area, the inclusion of demographic or socioeconomic variables
lacks of interest.

METMA IX Workshop 2

149



Á. Briz et al. Spatial analysis of crash data in the road network of the city of Valencia

3 Methodology

3.1 Concept of neighbour

Given an edge, i, of the directed linear network, its neighbourhood, N(i), can be defined in four different
ways depending on whether the traffic flow information available is used. In the simplest way, if this
information is not used, two edges i and j are neighbours if they share a vertex. However, the use of
the traffic flow leads to the definition of three other types of neighbourhoods. First, the neighbourhood
between i and j can be established if it is possible to travel from i to j or from j to i without passing
through another edge of the network, indistinctly, which is denoted Ndir(i). In addition, if a distinction
is made between travelling from i to j, or vice versa, it is possible to define the neighbouring edges that
allow you to reach i (Nin

dir(i)) of those that allow you to leave from i to another edge of the network
(Nout

dir (i)) (see Figure 2 to see an example of all these neighbourhoods). Hereinafter these two types of
neighbours are referred to as in-neighbours and out-neighbours, respectively.

The four ways of constructing neighbourhoods lead to the definition of four different adjacency
matrices, which are named as W , Wdir, W in

dir, W out
dir , preserving the notation chosen for the neighbourhoods.

For any of these matrices, their elements, wi j, are called weights and wi j = 1 if j ∈N(i), and 0 otherwise.
The values of non-zero entries of these matrices are normalized to sum to 1 for every row. Note that both
matrices W and Wdir are symmetric according to their definition, but W in

dir and W out
dir are generally not.

ih ja

b

c

d

Figure 2: Examples of neighbourhoods in a directed linear network. The six edges that are contiguous
to edge i allow the construction of the neighbourhoods N(i) = {a,b,c,d,h, j}, Ndir(i) = {b,d,h, j},
Nin

dir(i) = {b,h} and Nout
dir (i) = {d, j}

3.2 Edge neighbourhood geometry

Geometric structure surrounding each edge of the network was studied. Given an edge of the network,
the factors considered for each neighbouring edge were the neighbourhood type (in or out) and the angles
formed between the edge and its neighbours. Edge length and the number of in and out neighbours were
also included to better discriminate between edges. By using this information, a total of fifteen geometric-
related variables were defined by combining the angles and lengths of the edges, the neighbourhood
structure and the traffic flow. The k-means algorithm [5] was then applied to these fifteen variables,
which allowed the composition of four clusters of 42, 130, 163 and 109 edges, respectively. Cluster
2 is mainly composed of medium-long edges that are part of a crossroad (intersection). Cluster 3 is
formed with very short edges with a high proportion of sharp angles, which represent abrupt changes of
direction in the directed network. Cluster 1 clearly presents the highest edge length and an high number
of neighbours. Finally, Cluster 4 is made of short-medium length edges and a quite high connectivity
with short-length edges if compared with Clusters 1 and 2.
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3.3 Models tested

Three statistical models were tested and compared: spatial lag model (SL) [6] with two different defini-
tions of the response variable and a basic non-spatial generalized linear model (GLM) with the accident
counts at the edge level as the response. For the SL model the rate of accidents by road meter during
the period of years considered was firstly used. Moreover, another continuous response variable was
constructed by computing the equal-continuous kernel density estimate at the middle points of each of
the 444 edges, according to the formula established in [7] choosing a bandwidth of 150 metres.

4 Results

The SL model based on the kernel density estimates clearly outperformed the other two in terms of
model fitting, presenting a much lower AIC value. The use of the four different neighbourhoods did
not affect the results as much as expected, but the Wdir neighbourhood matrix, considering both in and
out neighbours, produced the best results. If the best fitting model (SL with kernel response) employing
the Wdir matrix is selected for further discussion, it can be concluded that roads with only 2 lanes are
a synonym of less traffic accidents. However, roads with five lanes and roads with two accesses (two
in-neighbours) seem to produce more accidents. Finally, roads belonging to the aforementioned Cluster
1 are less dangerous than the ones that are part of the other three, despite the high presence of long roads
with a high connectivity in this cluster.
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Abstract. We formulate statistical tests to check for interaction effects under the two-way ANOVA
models when the observations are second-order descriptors of spatial point patterns. The data involved
come from a metallurgy procedure related to flotation cells. In particular, we analyse the interaction
effect between the frother concentration and the volumetric air flow factors in the spatial distribution
of bubbles.

Keywords. Factorial models; Flotation bubbles; K-function; Point processes; Replicated point pat-
terns.

1 Introduction

In order to quantify the gas dispersion, well-known gas dispersion properties are defined within the flota-
tion process [7, 3]. For instance, gas holdup (volumetric fraction of gas in a gas-slurry mix), superficial
gas velocity (volumetric gas flow rate per cross-sectional area of cell), bubble size distribution (BSD,
characterised by a statistical bubble diameter), and the derived parameter bubble surface area flux [5, 7].

Some of these gas dispersion properties can be measured from a snapshot of bubbles taken in some
moment of the flotation experiment. The images of these bubbles are captured by a camera on top of
a flotation cell. Each bubble represents a location with diameter or area of the bubble attached, and
this can be considered a marked point pattern. We depict an example of such bubbles in Figure 1. The

Figure 1: Two different sampled images of bubbles captured on top of a flotation cell. A tube, half inch
in diameter, is immersed in the pulp, and the bubbles which are obtained from the foam are sampled.

characteristics of the flotation experiment are strongly dependent on some operating factors. A proper
combination of gas rate and bubble size is required to provide a considerable gas holdup in the flotation
pulp [6]. The volumetric air flow (L/min) and the specific frother concentration (ppm) are two factors
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that could influence the physical properties [4]. Therefore, a relevant question is whether the combined
action of these two factors enhances or inhibits the action of each other in the spatial descriptor. We
develop a suitable statistical test by using the replication in order to analyse the interaction.

2 Methodology

Suppose that factor A has a levels and factor B has b levels. Each realisation or replicate contains all
ab factorial combinations. Additionally let c be the fixed number of replicates in each cell. We have a
functional descriptor sample {K̂i jk}, i = 1, . . . ,a, j = 1, . . . ,b,k = 1, . . . ,c.

For a two-way ANOVA, the mean Ki j(r) can be written as

Ki j(r) = K0(r)+ τi(r)+β j(r)+(τβ)i j(r), i = 1, . . . ,a, j = 1 . . . ,b,r ∈ T, (1)

where K0(r) is the overall mean effect, τi(r) is the effect of the ith level of the row factor A, β j(r) is
the effect of the jth level of column factor B, (τβ)i j(r) is the effect of the interaction between τi(r) and
β j(r). Both factors are assumed to be fixed, and the factor effects are defined as deviations from the
overall mean. We assume balanced factorial designs, so we determine whether row and column factors
interact, i.e, we test

H I
0 : (τβ)i j(r) = 0 for all i, j, and for r ∈ T,

H I
1 : at least one (τβ)i j(r) 6= 0, for some r ∈ T. (2)

We consider pooled estimators of cell weighted mean and covariance functions given by

K̄i j·(r) =
1

ωi j·

c

∑
k=1

ωi jkK̂i jk(r), i = 1, . . . ,a, j = 1, . . . ,b, (3)

and

γ̂i j(r,s) =
1

c−1

c

∑
i=1

[
K̂i jk(r)− K̄i j·(r)

][
K̂i jk(s)− K̄i j·(s)

]
, (4)

where the number of points per pattern is denoted by ni jk, where k is the individual within the i j cell
(sample) and i = 1, . . . ,a and j = 1, . . . ,b, and ωi j· = ∑c

k=1 ni jk(ni jk− 1). As in the classical ANOVA
two-way analysis, we define K̄i··, K̄· j· and K̄··· as the corresponding row, column, and grand weighted
average K-functions. Thus,

K̄i··(r) =
1

ωi··

b

∑
j=1

ωi j·K̄i j·(r), K̄· j·(r) =
1

ω· j·

a

∑
i=1

ωi j·K̄i j·(r), i = 1, . . . ,a, j = 1, . . . ,b, (5)

K̄···(r) =
1

ω···

a

∑
i=1

b

∑
j=1

ωi j·K̄i j·(r),

where

ωi·· =
b

∑
j=1

ωi j·, ω· j· =
a

∑
i=1

ωi j· and ω··· =
a

∑
i=1

b

∑
j=1

ωi j·. (6)

From (5), the estimator of interaction effects is

(̂τβ)i j(r) = K̄i j·(r)− K̄i··(r)− K̄· j·(r)+ K̄···(r). (7)
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Let us consider some fixed r ∈ T and let SSI(r) be the interaction-effect pointwise sum-of-squares and
let SSE(r) denote the pointwise sum-of-squares due to errors. Following the classical balanced two-way
ANOVA, we define

SSI(r) =
a

∑
i=1

b

∑
j=1

[K̄i j·(r)− K̄i··(r)− K̄· j·(r)+ K̄···(r)]2 = c
a

∑
i=1

b

∑
j=1

(̂τβ)
2
i j(r),

SSE(r) =
a

∑
i=1

b

∑
j=1

c

∑
k=1

[
K̂i jk(r)− K̄i j·(r)

]2
= (c−1)

a

∑
i=1

b

∑
j=1

σ̂2
i j(r).

(8)

The corresponding Fisher-test type statistics for H I
0 is given by

F I =

∫
T SSI(r)dr/((a−1)(b−1))∫

T SSE(r)dr/(ab(c−1))
. (9)

2.1 Inference

Our interest focuses on testing the null hypothesis that K-functions are not altered by the combined effect
of the factors even though the analytical form of the probability function of F I remains unknown. Thus,
we perform a pure randomisation test to permute exchangeable residuals across levels of the factors in
order to obtain the approximate conditional distribution of F I . We generate random samples as follows:
in the first step, residual functions are defined as

ε̂i jk(r) =
√

ni jk(ni jk−1)
[
K̂i jk(r)− K̄i j·(r)

]
,

i = 1, . . . ,a, j = 1, . . . ,b,k = 1, . . .c,
(10)

and
ε̂†

i jk(r) =
√

ni jk(ni jk−1)
[
K̂i jk(r)− K̂i··(r)− K̂· j·(r)+ K̂···(r)

]
,

i = 1, . . . ,a, j = 1, . . . ,b,k = 1, . . .c.
(11)

Under the null hypothesis, ε̂i jk(r) and ε̂†
i jk(r) are approximately exchangeable quantities since the sam-

pling variance of each Ki jk(r) is proportional to n−1
i jk . We analyse a set of simulations generated by varying

parameters as the intensity in the standard Poisson case. Additionally we simulate patterns with different
clustering parameters. The simulation study shows that permutation of residuals reproduce the distri-
bution of the test statistic, presenting approximate uniformity p-values in most cases as well as good
behaviour concerning the power.

2.2 Data analysis

The test based on Fisher-type statistic was carried out using the integration interval T = (0,r0], whose
upper integration bound is given by r0 = 1.57mm. We implemented the tests with 500000 random
permutations. For the interaction effect, we have a significant p-value associated with the residuals
p̂ε̂i jk = 0.0275, analogously p̂ε̂†

i jk
= 0.0153.

The point patterns exhibit significant differences up to small distances (see Figure 2). We conclude
that the bubble patterns do not support hypothesis of zero interaction. The K-functions indicate that the
effects of the frother concentration differ for the three levels of the volumetric airflow rate.
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Figure 2: Pooled mean values of K̂i jk(r) estimated on 9 cells of the flotation experiment. The red line
represents the complete spatial randomness.
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Abstract. The pair correlation function can be considered one of the most informative second-order
characteristic of spatial point processes. Nonparametric estimators of the pair correlation function
are useful tools to identify the type, aggregation or inhibition, and strength of spatial interaction in
observed spatial point patterns. Kernel smoothing is the most popular nonparametric estimator of
the pair correlation function for both homogeneous and inhomogeneous point processes. The per-
formance of any kernel estimator depends on the bandwidth parameter. Several procedures, such as
cross-validation, semiparametric bootstrap or an adaptive plug-in rule, have been proposed for band-
width selection in the stationary framework. To our knowledge, least-squares cross validation is the
only data-driven bandwidth selector available for the inhomogenous case. This work analyzes the
asymptotic properties of the kernel estimator of the pair correlation function for second-order intensity
reweighted stationary (SOIRS) point processes. We propose a nonparametric bootstrap to estimate
the asymptotic mean square error (AMISE), and develop a bandwidth selector based on the mini-
mization of the bootstrap AMISE. We compare the performance of our proposal with the least-squares
bandwidth selector in a simulation study, and through its application to the second-order analysis of
wildfires patterns in Galicia (NW Spain).

Keywords. AMISE; Data-driven; Nonparametric bootstrap; Second-order characteristics; Wildfires
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Abstract. In this work, a nonparametric procedure to approximate the conditional probability that a
regionalized variable exceeds a certain threshold value is proposed. The method consists of a boot-
strap algorithm that combines conditional simulation techniques with nonparametric estimations of
the trend and the variogram of the spatial process. For the local linear estimation of the mean, a
bandwidth selection method that takes the spatial dependence into account is used. The variogram
is approximated by a flexible estimator based on the residuals, previously correcting its bias due to
the estimation of the trend. The proposed method allows obtaining estimates of the exceedance risk in
non-observed spatial locations, and its behavior will be analyzed through simulation studies and with
the application to a real data set.

Keywords. Conditional simulation; Local linear estimation; Bootstrap.

1 Introduction

An important tool for the analysis of environmental problems is the construction of risk maps. These
maps provide estimates of the probability that a given study variable (for example, pollutants, precipita-
tion levels, etc.) exceeds certain permissible values.

Assuming the spatial process
{

Y (x),x ∈ D⊂ Rd
}

, our interest focuses on the estimation of the con-
ditional probability rc(x)=P(Y (x)≥ c|Y), where Y=(Y (x1), . . . ,Y (xn))

t denotes the observation vector
and c is a threshold value.

Additionally, we will suppose that the process is not stationary in the mean, that is,

Y (x) = µ(x)+ ε(x), (1)

where µ(·) is the trend function, and the error term ε, representing the spatial dependence, is a second
order stationary process with zero mean and covariogram C(u) =Cov(ε(x) ,ε(x+u)), with u ∈ D. Ho-
wever, in practice it is preferred to estimate the small-scale variability through the variogram γ(u) =
C(0)−C(u).
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The geostatistical techniques commonly used to approximate this probability range from traditional
methods, such as indicator kriging or disjunctive kriging (see, e.g. [6] y [10], respectively), to more
recent procedures, such us those based on analysis of compositional data (see, e.g. [9]). However, these
methods usually assume parametric models and, therefore, they can present misspecification problems.
From the nonparametric point of view, Fernández-Casal et al [4] proposed a bootstrap method to estimate
the unconditional probability P(Y (x) ≥ c), using local linear estimates of the trend and the variogram,
jointly with a procedure to correct the bias due to the use of residuals.

In the present work, we will extend the previous method using conditional simulation techniques, so
that the behavior of the bootstrap replicas generated by this procedure match with the sampling behavior
observed from the vector Y.

2 Nonparametric estimation and unconditional bootstrap

Assuming model (1), the local linear estimator of the trend can be written as (see, e.g. [8]):

µ̂H(x) = et
1
(
Xt

xWxXx
)−1 Xt

xWxY≡ st
xY, (2)

where e1 = (1,0, . . . ,0), Xx is a matrix with ith row equal to (1,(xi−x)t),

Wx = diag{KH(x1−x), ...,KH(xn−x)} ,

with KH(u) = |H|−1 K(H−1u), K being a kernel function, and H a d×d matrix bandwidth. To select this
bandwidth under dependence, the criterion proposed in [5] is recommended.

In a similar way, the local linear estimation of the variogram γ̂(u) can be obtained by applying
(2) using the residuals r = Y− µ̂H(x). However, this procedure introduces biases in this estimation,
underestimating the variability of the spatial process (see e.g. [2], Section 3.4.3). Simply note that:

Var(r) = Σ+SΣSt−ΣSt−SΣ = Σr

where Σ is the covariance matrix of the errors and S is the n× n matix whose i−row is equal to st
x.

To reduce this effect, a nonparametric procedure similar to that proposed in [3] can be used, in order to
obtain a corrected local linear estimator of the variogram γ̂(·).

Based on the above, Fernández-Casal et al [4] proposed a bootstrap procedure to estimate the uncon-
ditional risk at a non-observed location xα. In their approach, the estimated unconditional probability
is obtained from kriging predictions, whose values, in practice, smooth the true spatial fluctuation of
the data (see, e.g. [7]). As this could affect the estimation of the exceedance probability, we propose
the following algorithm to generate unconditional bootstrap replicas Y ∗NS(xα) at the estimation locations
{xα : α = 1, . . . ,n0}:

1. Compute µ̂H(x) and the corresponding residuals r to obtain γ̂r(·) and its corrected version γ̂(·),
following [3].

2. Form Σ̂r from γ̂r(·), and find the matrix L such that Σ̂r = LrLt
r, using Cholesky decomposition.

3. Compute the “uncorrelated" residuals e = (e1,e2, . . . ,en)
t = L−1

r r and center them.
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4. Obtain independent bootstrap samples of size n0 from e, denoted by e∗ =
(
e∗1,e

∗
2, . . . ,e

∗
n0

)t
.

5. Form the covariance matrix Σ̂α corresponding to the estimation locations xα using γ̂(·), and com-
pute Lα such that Σ̂α = LαLt

α.

6. Compute the unconditional bootstrap errors ε∗NS = (ε∗NS(x1), . . . ,ε∗NS(xn0))
t , such that ε∗NS = Lαe∗.

7. Obtain the unconditional bootstrap replicas Y ∗NS(xα) = µ̂H(xα)+ ε∗NS(xα), α = 1, . . . ,n0.

The latter algorithm uses non-conditional simulation techniques based on Cholesky’s decomposition.
This would allow us to assume that the bootstrap replicas have their mean and variance-covariance matrix
equal to those of the spatial process Y (·), under the assumption of unbiasedness of the corresponding
estimators (see, e.g. [2], Section 3.6.1.). However, as the behavior of these replicas does not necessarily
coincide with the observed values at the sample locations (see, e.g. [1], Section 7.3.1), this algorithm
should not be used for the estimation of the conditional risk.

3 Conditional bootstrap algorithm

For the sake of simplicity, let us assume that the trend is known in (1) and the true errors ε=(ε(x1), . . . ,ε(xn))
are observed. The principle of the conditional simulation of the error at a location xα (see, e.g. [7]), starts
from the trivial decomposition:

ε(xα) = ε̂(xα)+ [ε(xα)− ε̂(xα)] , (3)

where ε̂(xα) is the simple kriging prediction at xα computed from ε. The idea is to substitute the unknown
kriging error (the second term on the right), by a simulation of this error obtained from a non-conditional
simulation εNS(x) of the process. Then, a conditional simulation of the process is:

εCS(xα) = ε̂(xα)+ [εNS(xα)− ε̂NS(xα)] . (4)

where ε̂NS(xα) is the kriging prediction at xα obtained from the unconditional simulations εNS(xi) at the
sample locations. Proceeding in this way, it is easy to verify that εCS(xi) = ε(xi) and, in the case of
simple kriging, Cov(εCS(x),εCS(x+u)) =C(u) (see e.g. [1], Section 7.3.1). These properties guarantee
that the simulations reproduce the behavior of the observed data, keeping the dependence structure of the
spatial process.

Taking into account the previous results and that the trend µ̂H of the bootstrap replicates is known,
the proposed bootstrap algorithm to estimate the conditional risk is as follows:

1. Use the unconditional bootstrap algorithm described in previous section to (jointly) generate ε∗NS(xα),
α = 1, . . . ,n0 and ε∗NS(xi), i = 1, . . . ,n.

2. Compute the simple kriging predictions ε̂(xα) and ε̂∗NS(xα) from the observed residuals r and from
the bootstrap errors ε∗NS(xi), respectively.

3. Obtain the conditional bootstrap errors ε∗CS(xα) = ε̂(xα)+ [ε∗NS(xα)− ε̂∗NS(xα)].

4. Compute the conditional bootstrap replicas Y ∗CS(xα) = µ̂H(xα)+ ε∗CS(xα).
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5. Repeat steps 1 to 4 a large number of times B to obtain Y ∗(1)CS (xα), . . . ,Y
∗(B)

CS (xα).

6. Obtain r̂c(xα) =
1
B

B
∑
j=1

I
(

Y ∗( j)
CS (xα)≥ c

)
.
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Abstract. Obesity has become a health problem worldwide. According to the WHO, the tren in obesity
in México is one of the highest worldwide. The association of obesity as a risk factor to hipertensive
diseases and diabetes makes it necessary to analise the spatial distribution of its prevalence in the
country. Such analyses provide information necessary to plan the level of health care that will be
needed in the short and mid term. In this work we present the results of a preliminary analysis using
the data provided by the 2012 National Health Survey. We fit a hierarchical poisson model to asses
the relative prevalence at a municipality level. Our results show that the prevalence does not show any
clear trend, an that there exist several hot spots associated to very particular municipalities.

Keywords. Non transmisible disease, obesity, spatial prevalence.

1 Introduction

The prevalence of non-transmisible diseases is rising rapidly throughout the world, and it is expected to
be the leading cause of mortality in Latin America [8]. The increase in the number of cases of obesity is a
worldwide phenomenon and Mexico is not the exception. Moreover, annual prevalence rate of obesity in
Mexico increased among adults by approximately 2 percent per year between 1988 and 2006, the largest
increase documented worldwide [2]. Obesity is the main modifiable risk factor for the development of
chronic non-communicable diseases, such as diabetes mellitus and cardiovascular diseases [7]. Also,
diabetes mellitus and cardiovascular diseases are the two main causes of general mortality in Mexico.
For type 2 diabetes a complex gene-environmental interaction for which several risk factors, such as
age, sex, obesity and hypertension, are well documented [6]. In Mexico, near 11.7 million Mexicans are
expected to have diabetes by the year 2025 [5]. Despite this scenario, there is a lack of spatial studies
examining the association of diabetes or cardiovascular diseases with the spatial distribution of obesity
or others socio-economic indicators. Although non-transmisible diseases cannot be characterized by an
infectious agent, the observed spatial pattern of incidence (new events) or prevalent cases could provide
information on the underlying mechanisms of the disease [1]. In this context, we asses this relationship
using Bayesian spatial models at municipality level in Mexico to obtain maps of the spatial prevalence
of obesity. The results shown here corresp
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2 Methods

2.1 Data

We used the data from National Health Survey to Mexico (2012) and socio-economic indicators from
National Institute of Geographic and Statistics form the 2010 census.

Figure 1: Human index of development for municipalities in Mexico

Figure 2: Social of lag index for municipalities in Mexico

2.2 Statistical models

For mapping the risk of obesity let yi the observed number of people with obesity in the municipality
i and let xi the log relative risk in the zone i. We can assume that yi given xi are independent Poisson
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variates due obesity is not a contagious disease. So,

yi|xi ∼ Pois(ciexi)

where ci is the expected number of people with obesity in the municipality i with constant risk, as it
has been modeled for other diseases [3]. The aim of this study is to model xi considering the spatial
dependence and socioeconomic factors as Human Ddevelopment Index (IDH) (figure ??) and Social
Gap Index (IRS) (Figure ??) by municipality. We propose the standard model:

xi = zi
tβ+ui + vi for i ∈ {1, ...,n} (1)

where:
1.- xi = log(ri) and ri is relative risk for i municipality
2.- zi is the associated vector of covariates for the i municipality
3.- β is the associated vector of coefficients to covariates.
4.- ui represents variables that would display spatial structure.
5.- vi is the effect of subjacents variables without structure. To estimate the parameters in (1) we use
Bayesian approach based on MCMC methods.

Figure 3: Estimated relative prevalence of obesity (X10) in the mexican municipalities (left) and a zoom
to show the relative prevalence of obesity (X10) ina an area around México City.

3 Results and discussion

Figure 3 shows the results of the posterior mean of the relative prevalence of obesity in mexican mu-
nicipalities and a zoom for the area around México City. The spatial distribution shoes the presence
of several hot spots, where the relative prevalence of obesity is 24 fold time higher with respect to the
national average. Those hot spots do not form a cluster and are scattered over different states. They
correspond to rural municipalities with high social lag and IDH and high proportion of migrant workers
in the United States, except for the municipality of Tijuana, in the upper left extreme in the map, which
is a large city with a high proportion of people living in poverty. Tijuana has a very high proportion of
migratory workers and also high number of people that has been deported back to México. Results about
other factors associated to the spatial variability shown in figure 3 will be discussed.
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Abstract. We show an extension of the functional regression model to the case of spatially correlated
errors. The estimation of the parameters is obtained by feasible generalized least squares. Functional
geostatistics and particularly the trace-variogram function is proposed as a method for estimating the
spatial dependence
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1 Introduction

We propose a functional regression model to relate two functional variables (response and covariate) ob-
served in sites (stations) of region. Data at each station are previously smoothed by using basis functions.
This methodology allows carrying out spatial estimation of a response curve given the information of a
functional covariate obtained at the same station. We consider a functional concurrent model [4] with
spatially correlated errors. Functional geostatistics and in particular the trace-variogram function [2] is
used to estimate the spatial dependence of errors curves [1]. The trace-variaogram parameters are esti-
mated by the method-of-moments. Feasible generalized least squares is considered as estimation method
of the regression parameters. Next we describe the essentials of the methodology proposed. We also
show an application with rainfall curves [5]. Some conclusions are given at the end.

2 Functional regression model with spatial dependence

Suppose you have a collection of spatially indexed functional variables (Xi(t),Yi(t)), i = 1, . . . ,n, with
(1, · · · ,n) a n-tuple of sites ∈ D ⊂ R2 and we want to study the relationship between these ones by
considering the concurrent model [4]




Y1(t)
...

Yn(t)


=




1 X1(t)
...

...
1 Xn(t)



(

β0(t)
β1(t)

)
+




ε1(t)
...

εn(t)


 , (1)
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where β0(t) and β1(t) are the parameters of interest and εi(t), i = 1, . . . ,n are n spatially correlated ran-
dom errors. The problem considered here is the estimation of these parameters considering the spatial
dependence of the model. It is assumed that both functional variables and parameters in model (1) can
be expressed in terms of K basis functions, θ1(t), . . . ,θK(t), by

Xi(t) =
K

∑
j=1

xi jθ j(t) = xT
i θ(t) (2)

β0(t) =
K

∑
j=1

b0 jθ j(t) = θT (t)b0 (3)

β1(t) =
K

∑
j=1

b1 jθ j(t) = θT (t)b1. (4)

With the representations in (2) to (4), the model (1) can be written, in matrix notation, as

Y(t) = X(t)Θ(t)b+ε(t) (5)

The estimation parameters β0(t) and β1(t) in 1 is obtained through the estimation of b = (b0,b1)
T in 5

by using generalized least squares. We minimize respect to b

SSE(b) =
∫

[Y(t)−X(t)b]T Ω−1 [Y(t)−X(t)b] , (6)

where Ω is the matrix of variances and covariances n× n of the vector ε(t), with elements Ωi j =
Cov(εi(t),ε j(t)). Differentiating respect to b in (6) we have

b̂ =

[∫
XT (t)Ω−1X(t)dt

]−1[∫
XT (t)Ω−1Y(t)dt

]
. (7)

In practice the covariance matrix of the errors Ω is unknown and consequently we cannot calculate b̂
in equation (7). The alternative that we consider is to use a feasible generalized least squares estimator
(FLSE). First a functional concurrent regression model assuming independence is estimated. Then the
residuals and the trace-variogram function [2, 3] are used to estimate the matrix Ω. Posteriorly we
estimate the parameters by

b̂ =

[∫
XT (t)Ω̂−1X(t)dt

]−1[∫
XT (t)Ω̂−1Y(t)dt

]
. (8)

The components of b̂ = (b̂0, b̂1)
T are replaced in equations (3) and (4) to estimate the parameters β0(t)

and β1(t), respectively.

3 Relationship between rainfall curves in a region of Colombia

The methodology described is illustrated through its application to rainfall data recorded in weather
stations from the Department of Valle del Cauca, Colombia in 2011. For each one of the 82 stations,
we dispose of 73 pentadal rainfall data obtained from two sources of information (ground and satellite).
These data were accumulated so that in the pentadal 73 (day 365 of the year) we have the accumulated
rainfall of the year. Based on these data and using a B-splines basis (as smoothing method) we obtained
for each station a curve (a functional datum) of accumulated rainfall (Figures 1 and 2). Assuming
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Figure 1: Ground accumulated rainfall curves (gray lines), ground accumulated rainfall mean curve (dark
line) and ground accumulated rainfall standard deviation curve (dashed line). Curves were obtained by
smoothing discrete accumulated rainfall data by using a B-splines basis. There are 82 curves (gray lines),
each one corresponding to a meteorological station from the Department of Valle del Cauca, Colombia.
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Figure 2: Satellite accumulated rainfall curves (gray lines), satellite accumulated rainfall mean curve
(dark line) and satellite accumulated rainfall standard deviation curve (dashed line). Curves were ob-
tained by smoothing discrete accumulated rainfall data by using a B-splines basis. There are 82 curves
(gray lines), each one corresponding to a meteorological station from the Department of Valle del Cauca,
Colombia.
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Figure 3: Estimated functional slope β̂1 (t) of the functional concurrent model (with spatially correlated
errors) between ground and satellite accumulated rainfall curves (data from meteorological stations in
Valle del Cauca, Colombia). In gray a 95% pointwise confidence band for β1 (t).

independence, a functional regression model between ground and satellite curves was initially fitted.
Then the functional residuals were used to explore the spatial correlation. The trace-variogram function
was estimated (a exponential semivariance model was fitted). Once identified the spatial covariance
structure of the errors, the covariance matrix Ω was estimated and used in equation (7) for obtaining
the estimation by FLSE of b. The components of this vector were posteriorly used in Equations (3) and
(4) for estimating the parameters of interest. 95% point-wise confidence limits for the parameters are
calculated following [4] by using the residuals of the final model (where we can assume independence
between the errors). The estimated functional regression coefficient β̂1 (t) (Figure 3) shows a significant
(the 95% confidence band do not include the zero in any period) positive contribution in the explanation
of the ground rainfall data throughout the year. This relationship is much stronger at the start of the year
(where there is less variability in both sets of curves). This estimation allows to conclude that the satellite
information is highly related to the ground data but also indicates that a filter is required (for example a
model such here estimated) if we want to use it in order of having a wide coverage of the precipitation in
this region.
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Abstract. Tunisia is suffering from intense and persistent drought episodes characterized by significant
rainfall deficit. The country’s historical memory confirms the abundance of drought sequences and
their aggressiveness, particularly in arid zones. This study presents the interest of certain statistical
and geostatistical methods for the spatial and temporal variability of the drought at different time
steps. This drought would be characterized and quantified based on the triptych: "intensity, duration
and geographical extent". The data used concern 67 raingauges covering the Tunisian territory and
spreading over the period (1900-2015) and over which SPI indices are calculated. The PCA showed
three similar areas in terms of drought, the average SPI for each region is then calculated. Spatial
variability is analyzed based on the semi-variogram and the trend of the series is analyzed by the
Mann Kendall test.

Keywords. Drought; Tunisia; Trend analysis; Geostatistics.

1 Introduction

Tunisia has for years been suffering from intense and persistent drought episodes characterized by signif-
icant low rainfall amounts. Several studies and efforts have been made to research and analyze the causes
and consequences of this variability in drought [1] and several drought indices have been used over the
years, and all over the world, ranging from the simplest index of normal precipitation or precipitation
percentiles, to the more complex, including the Palmer Drought Index. The specific objectives of the
present study is: (1) to assess the local characterization of this phenomenon, by adopting the SPI like
drought index (2) to detect trend in SPI time series, (3) to delimit homogenous regions by PCA and (4)
to detect the spatial variability of drought using geostatistical methods.

2 Materials and methods

This study concerns all the Tunisian country. Tunisia is a transition climate zone located between the
arid climate of the Sahara in the South and the Mediterranean humid climate to the North. Its climate is
mostly semi-arid with hot dry summers and cold wet winters. In addition, high precipitation variability
and topography repartition yield different natural climatic regions: humid in the North, semi-arid in the
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Center and arid to the South. Collected data concern 67 rainfall stations at monthly time scale.

The different analysis tools that were used in this study are:

• The calculation of the standardized precipitation index SPI for 67 rainfall stations. The Standard-
ized Precipitation Index (SPI) is a widely used index to characterize meteorological drought on a
range of timescales ;

• Principal Component Analysis: to look for areas of similarity in terms of drought ;

• Analysis of trends and breaks in the SPI time series ;

• Spatial analysis using geostatistical based methods.

3 Results and discussion

T he aim of the PCA application is to detect homogenous regions in terms of drought. The study area was
delineated into homogeneous sub-regions or zones of drought resemblance (ZRS) by grouping stations
that were statistically correlated in terms of drought and reflecting different climatic and physiographic
characteristics. The boundaries of the ZRS are delineated taking into account geographic features and
the spatial distribution of precipitation. At this level, each ZRS is studied by calculating the average
SPI index. For the 3 zones ZRC as shown in Fig. 1, the years of strong droughts are not identical until
the first half of the 20th century, they do not generally coincide towards the end. In region C1, the SPI
values indicate dry periods during 223 months for a percentage of 16% of the total time analyzed (= 115
years). There are 45 short-term dry events with an average duration of about 8 months. The most notable
dry periods begin in November 1913 with a duration of 15 months, with a maximum value of (SPI-3 =
-1.16) which indicates a moderate drought during this period. The longest and most deficient episode is
between the months of March 1945 and June 1947 which reveals a deficit of cumulative rainfall for 28
consecutive months whose drought reached its extreme phase in April 1945 indicates a trough (SPI -3 =
-2.61).

Figure 1: Homogenous regions delimitation PCA based
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Exponential and pure nugget variogram models, see Fig. 2, are the most present ones for all direc-
tions. Pure nugget models occur generally in the middle of the 20th century indicating that the spatial
structure of the phenomena is completely random.

Figure 2: Variogram model occurence

4 Conclusion

The objective of this study was to demonstrate the potential of the SPI index to study the drought phe-
nomenon via a number of analysis and mapping tools. Thus, our results show that drought is a phe-
nomenon with great variability and which is greatly aggravated by the climate changes felt at the level
of the Mediterranean. Using this drought index, we have achieved the ability to track spatio-temporally
and analyze the evolution of drought.
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Abstract. Organic carbon is a good indicator of soil fertility and enables to mitigate gas emissions.
Having at our disposal a precise mapping of its content is therefore essential. In this study we aim
at spatially estimate the soil carbon content (SOC) in the Versailles plain and the Alluets plateau, a
221 km2 agricultural area. The novel Bayesian inference approach called Integrated Nested Laplace
Approximation with Stochastic Partial Differential Equation (INLA-SPDE) allows us to ensure consis-
tency between various available sources of information (soil samples and optical satellite image) and
to produce in a short time a posteriori estimations of the parameters and the SOC field, considered as
a latent field. Two models were evaluated and compared using the elevation covariate stemming from
a Digital Elevation Model (DEM), including or not the data from the satellite image. Adding the image
improves the prediction quality in terms of RMSE (Root Mean Square Error RMSE) since the RMSE
goes from 4.48 g.Kg−1 to 3.81 g.Kg −1 using a validation set of 75 locations. Overall the carbon
prediction map from the joint model represents more realistically the spatial structure and variability
of the carbon field.

Keywords. Spatial statistics; INLA-SPDE; SOC; Joint modelling.

1 Introduction

Precise mapping for organic carbon is essential as it is a good indicator for soil fertility and gas emissions
mitigation. We aim at predicting topsoil organic carbon (SOC) of bare cultivated soils over the Versailles
plain and the Alluets plateau, a 221 km2 agricultural area with both contrasted soils and SOC contents,
located in the western region of Paris. In a previous study ([4]), we produced SOC predictions maps
using geostatistical techniques based on soil samples and an elevation covariate stemming from a 25-
m of resolution Digital Elevation Model (DEM). Nevertheless, there are limitations using only field
samples: field measurements are expensive, limited in number and not sufficient enough to give a precise
idea of the variations on a local scale. In another study over this same region, reflectance spectroscopy
has been used as cheaper alternative to measure SOC content ([3]). The approach here is to propose a
model ensuring consistency between two available sources of information with different nature, namely
field samples and a SPOT4 image of a 20-m resolution in a Bayesian framework. Given the large size of
the data sets, we resort to the The Bayesian inference Integrated Nested Laplace Approximation (INLA)
combined with Stochastic Partial Differential Equation (SPDE) which is mostly used in spatial modelling
in case of huge data sets ([1],[2]). It allowed us to produce accurate estimations of the parameters and
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the SOC field, considered as a latent field. In this study, we have compared predictive performances of
two models both using the elevation covariate from the DEM: one integrating only field observations,
the other one including field observations and reflectances measurements jointly. Based on 253 field
samples collected from 2010 to 2013, this comparison has been made in two ways: through a resampling
bootstrap procedure (40 repetitions, 70 locations for validation) first, then using a combination of two
extra soil samples collected in 2016 and 2017 as validation sets.

2 Data sets

From 2010 to 2013, soil samples were collected at 253 locations sites, in 2016 at 26 sites, and in 2017
at 49 sites in the topsoil layer (Figure [ 1], left). We have used the locations from 2010 to 2013 as
the calibration set and combinations of 2016 and 2017 as validation sets. A SPOT4 image with 20m
resolution was acquired over the study zone on 17 April 2013. This multispectral image consists of 4
spectral bands in the green, red, and infrared domains. We kept only its first one b1 (500− 590 nm),
as the remaining bands carried the same type of information. Removing the vegetated soils led us to
exploit 105,941 pixel measurements. Focusing on the relation between the SOC contents and associated
reflectances, we observe it is shaped more like an exponential link rather than a linear link.

3 Model definition and inference approach

Model based on field samples

This model (denoted Elev1) is set up as follows:

yS
i ∼ Normal(ηS

i ,ε
S
i )

with ηS
i = β0 +β1Ei + ξi the linear predictor. yS

i is the SOC content sampled at site i, εS is a Gaussian
white noise with variance σ2

es
, β0, β1 are the fixed effects parameters, Ei is the elevation value at location i,

ξ is a Gaussian field with a Matérn covariance function with scaling parameter κξ, smoothness parameter
ν and variance σ2

ξ.

Joint model: field samples and image reflectance measurements

The spatial range previously estimated (500m) in [4] is much greater than the data grid resolution
(20m). We henceforth consider the surface reflectances of individual pixels as locations. Given the
relation between the reflectance data and the SOC content measurements, we assume that reflectance is
an exponential distributed variable. Both sources share the same spatial term ξ and an additive spatial
term γ is used in the reflectance modelling. The joint model (denoted SPOT b1−Elev12) is defined as
follows :

yS
i ∼ Normal(β0 +β1Ei +ξi,εS

i )

yR
j ∼ Exponential(λ j)

with ηS
i = β0 +β1Ei +ξi and ηR

j = log(1/λ j) = β2 +β3E j +θ0ξ j + γ j are the linear predictions. The

linear predictor here is defined as η joint =

(
ηS

ηR

)
.
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yR
j is the reflectance value at site j, β3 and β4 are fixed effects parameters and κγ, ν, σ2

γ are the Matérn
parameters of γ.

Inference with INLA-SPDE

The INLA algorithm ([2]) allows us to perform the inference of hierarchical models with Gaussian
latent processes. These models consist of three layers: hyperparameters θ, latent vector x, and a likeli-
hood model. If ξ = {ξ(s),s∈D⊆R2} is a random field with a Matérn covariance function characterized
by scaling and smoothing parameters κ and ν, the objective of the SPDE approach is to find a Gaussian
Markov Random Field (GMRF) ξ̃ with a local neighborhood and a sparse precision matrix, which ap-
proximates the field ξ. An approximate solution of the SPDE is obtained by dividing the domain into a
set of non-intersecting triangles (Figure[ 1]).

Figure 1: Triangulation of the study area. Left: samples locations collected, from 2010 to 2013 (orange),
in 2016 (green), in 2017 (purple). Right: pixel centers locations (red) coinciding with bare soils.

Both models were implemented using the R-package R-INLA, keeping the default value of the pa-
rameter ν (e.g equal to 1) for both. In Elev1, the latent vector is x= (ηS, ξ̃,β0,β1) and the hyperparameter
is θ = (κξ,σ2

ξ,σ
2
es
). In SPOT b1−Elev12, the latent vector is x = (η joint , ξ̃, ξ̃c, γ̃,β0,β1,β2,β3) with γ̃ the

GMRF approximating γ and ξ̃c = θ0ξ, and the hyperparameter is θ = (θ0,κξ,σ2
ξ,σ

2
es
,κγ,σ2

γ).

4 Results and perspectives

The model SPOT b1−Elev12 has slightly improved the prediction quality in the bootstrap procedure
(Table 1).

Model Mean Median Min Max
Elev1 3.23 3.17 2.78 4.00
SPOT b1−Elev12 3.22 3.15 2.53 4.98

Table 1: Bootstrap RMSE statistics in g.kg−1.

The difference is favourably wider when using combinations of 2016 and 2017 validation sets, what-
ever the data set (Table 2).
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RMSE (g.Kg−1)
calibration set (size) 2010-2013 (253) 2010-2013 (253) 2010-2016 (279)
validation set (size) 2016-2017 (75) 2016 (26) 2017 (49)

SPOT b1−Elev12 3.81 3.76 3.96
Elev1 4.49 3.98 4.62

Table 2: RMSE results in g.Kg−1 using the 2016 and 2017 validation sets.

In addition, looking at the mean square error at each site revealed that SPOT b1−Elev12 could carry
information for isolated locations and more realistically depict the SOC content variability. The com-
parison of the SOC content prediction maps we have produced for both models confirmed this analysis
(Figure [ 2]).

Figure 2: SOC prediction map. Left: Elev1. Right: SPOT b1−Elev12.

Further work will be to determine the threshold number of field samples from which SPOT b1−
Elev12 is to be preferred to Elev1. Moreover, another perspective would be to build models that could
integrate the information carried by all the layers stemming from multispectral images.

Acknowledgments. This study was carried out in the framework of the TOSCA PLEIADES-CO project
supported by the French Space Agency (CNES).
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Abstract. Spatio-temporal modelling has received more and more attention from academic researchers
for its promising applicability to complex data containing both spatial and temporal patterns. In
this work, we discuss the modelling of Particulate Matter (PM10) data by using a frequency domain
approach. We show that our model has several computational advantages, and that it is able to provide
good predictions and can be used for descriptive purposes.
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1 Introduction

Spatio-temporal statistics has been drawing more and more attention from academic researchers and in-
dustrial practitioners for its promising applicability to complex data containing both spatial and temporal
characteristics.
Different types of models have been proposed for analysing such data. A commonly used approach is to
work with models having a directly specified correlation structure, such as those used in geostatistics −
see, for example, Gneiting (2002); Stein (2005) and Rodrigues and Diggle (2010). The spatio-temporal
models developed in this direction view time as continuous rather than discrete and more emphasis is
put on spatial prediction but less on forecasting future values. Another possibility is to follow a dynamic
modelling approach by means of state space models. Example on this line are given, for example, by
Mardia et al. (1998) and Cressie and Wikle (2011).
Differently from above, in this work, we discuss a spatio-temporal model which is developed by using
a frequency domain approach. By discussing an application on air pollution, we show that our model
has several computational advantages, and that it is able to provide good predictions and can be used for
spatially descriptive purposes.

1.1 The model

Let Yt(s), where {s ∈ Rd , t ∈ Z}, denote a spatio-temporal random process. We assume that the ran-
dom process is spatially and temporally second order stationary, i.e. E[Yt(s)] = 0, Var[Yt(s)]=σ2

Y and
Cov[Yt(s)Y (t +u)](s+h)] = c(h,u), h ∈ Rd , u ∈ Z. With no loss of generality assume that the process
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has zero mean. The spectral density function of Yt(s) is defined as

f (λ,ω) =
1

(2π)d+1 ∑
u

∫ +∞

−∞
e−i(h′λ+uω)c(h,u) dh (1)

and its inverse relationship is

c(h,u) =
∫ +∞

−∞

∫ +π

−π
ei(h′λ+uω) f (λ,ω) dλ dω. (2)

Let {Yt(si)|i= 1,2, . . . ,m; t = 1,2, . . . ,n} be a sample from the zero mean temporal stationary process
{Yt(si)} at the location si, and define the Discrete Fourier transform (DFT)

Jsi(ωk) =
1√
2πn

n

∑
t=1

Yt(si) e−itωk (3)

where ωk =
2πk

n k = 0,±...,±[n
2 ]. In practice one uses Fast Fourier Transform algorithm to compute the

DFT of the time series observed at site si. From the above, by inversion, we get

Yt(si) =

√
n

2π

∫ π

−π
Jsi(ω)e

itω dω. (4)

By following Subba Rao and Terdik (2017), it can be shown that a valid spectral density function for the
spatio-temporal process is given by

f (λ,ω) =
σ2

e

2π3(λ2
1 +λ2

2 + |c(ω)|2)2ν (5)

where |c(ω)|2 is specified below. If the stationary spatio-temporal process is isotropic, then the covari-
ance function between the discrete Fourier Transforms Js(ω) and Js+h(ω) is obtained by the inverse
Fourier transform of equation (5) which gives

g‖h‖(ω) =Cov(Js(ω),Js+h(ω)) =
σ2

e

(2π)2

( ‖h‖
2|c(ω)|

)2v−1 K2v−1(|c(ω)| ‖h‖)
Γ(2v)

(6)

where Kα(.) is the modified Bessel function of the second kind of order α. An interesting feature of this
covariance function is that the argument of the Bessel function derived above is not only a function of the
spatial distance, but also a function of the frequency dependent scaling function, which is related to the
second order temporal spectral density function. For our process, under the conditions stated above, it
can be shown that this temporal spectral density function is obtained by considering the limiting behavior
of g‖h‖(ω) as‖h‖→ 0, which results

g0(ω) =
σ2

e

2(2π)2(|c(ω)|2)2ν−1(2ν−1)
. (7)

If one considers the special case of ν = 1, we clearly note that |c(ω)|2 is proportional to the inverse of
the spectral density function g0(ω) which, in turn, thus affects the behaviour of the covariance function
g‖h‖(ω).

Clearly, given g‖h‖(ω), it is possible to rely on the kriging framework to predict the Fourier coefficients,
JS0(ω), at a new site s0 and, accordingly, obtain the predicted data by means of the inverse transform

Ŷt(s0) =

√
n

2π

∫ π

−π
ĴS0(ω)e

itωdω. (8)
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1.2 Real Data Application

This section provides some details of a preliminary analysis carried out on daily PM10 time series col-
lected at 70 monitoring stations in Lombardia (Italy) during the year 2011. The monitoring network is
shown in Figure 1 while the data are shown in Figure 2.
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Figure 1: Pm10 Monitoring stations operating
in Lombardia region in 2011
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Figure 2: Daily time series concentrations of
PM10

We have assumed ν= 1 and predicted the detrended data by using a cross-validation procedure where
each time series is excluded in turn ad used only for prediction purposes. An exploratory analysis of the
data suggests that an AR(1) model may be adequate to explain the temporal dependence and specify
the structure of |c(ω)|2. Results suggest that the model is able to predict the process satisfactorily. As
expected, the best results are obtained especially for sites at the center of the configuration for which the
number of neighbours is larger. As an example, Figure 3 shows typical prediction results for sites with
coordinates ranging between 45.8−45.4 and 9.5−9.8 for latitude and longitude, respectively.

0 50 100 150 200 250 300 350 400
−100

−80

−60

−40

−20

0

20

40

60
Z pred

 

 
Predicted
Estimated

Figure 3: Plot of the observed (detrended data) and predicted values for a monitoring site
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Abstract. The study of the evolution of crime, whether in a temporal level or in a space level, presents
a great importance in the definition of measures to improve the welfare of the population. Usually, to
analyze the evolution of crime in a given region, it resorts to compare rates of several years. This work
aims to extend this analysis and use spatial and temporal models that allow to characterize the trend of
crime in the spatial level and in the temporal level. These models are applied to data crime observed
in the municipalities of mainland Portugal, from 2011 to 2016.

Keywords. Crime trends; Spatio-temporal; Bayesian modelling; Small area.

1 Introduction

In 1996 the World Health Organization (WHO) adopted Resolution WHA49.25 – Preventing violence:
a public health priority, and declared "violence a leading worldwide public health problem". With this
resolution it was intended to call attention to the severity of the consequences of violence for individuals,
families, communities and countries, and highlight the damaging effects of violence on public health [8].
Moreover the costs of violence to a nation’s economy need to be taken into consideration which includes
the direct costs of medical care and criminal justice as well as indirect costs. The public health approach
is science-based and multidisciplinary and complements criminal justice and human rights responses to
violence. Nevertheless, action requires measuring violence which presents many challenges but certainly
allows the vital basis knowledge for policy-making. Reliable information on violence is fundamental for
planning and monitoring purposes and there are several sources of information [8]. In this perspective
the study of the evolution of crime, whether in a temporal level or in a space level, presents a great
importance in the definition of measures to improve the welfare of the population thus contributing to
the public health approach to violence prevention. To analyze the evolution of crime in a given region
usually it resorts to compare rates of several years. This work aims to extend this analysis and use spatio-
temporal models that allow characterizing the trend of crime in the spatial level and in the temporal level.
In other words, it intends to understand if over the years and across regions there have been changes in
crime patterns. Also it aims to study the influence of population characteristics through some related
covariates.
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2 Study Region and Data

The study region consists on the 278 municipalities of continental Portugal. Portugal has an area of
89.015 km2 and a population of approximately 10.000.000 inhabitants. The majority of the population
lives in urban areas and near the litoral coast. The data consists of annual number of crimes recorded by
the police authorities by geographic localization and was obtained from the official statistics published by
the National Statistical Institute (INE) of Portugal. The crimes analyzed where divided in two categories:

• Crimes against persons: crimes against life, crimes against physical integrity, crimes against per-
sonal freedom, crimes against freedom and sexual self-determination, crimes Against Honor and
Crimes against privacy.

• Crimes against patrimony: crimes against property, crimes against property in general and crimes
against property rights.

3 Methodology

Several spatio-temporal Bayesian models of the field of epidemiology were considered and the model of
Bernardinelli et al. [1] was used because it considers terms that allow to identify the mean trend and area-
specific trends as well as to evaluate whether there is spatio-temporal interaction effects. Furthermore,
the model stabilizes area-specific risk estimates when data are scarce in small areas. These advantages
allow crime analysis to be conducted at a large map scale with small areal unit and provide insight into
the local distribution and patterns of crime trend.

Thus hierarchical Bayesian models were used and to implement these models INLA methodology
(Integrated Nested Laplace Approximations) was used through the package of R, R-INLA, [6]. The
models were applied to crime data observed in the 278 municipalities of the continental Portugal, from
2011 to 2016. In this way

yit |θit ∼ Poisson(Eitθit), i = 1, ...,278, t = 1, ...,6

where yit is the annual crime number in municipality i and in year t, θit the relative risk in municipality i
and in year t, Eit the expected number of crimes in municipality i and in year t, and nit is the number of
inhabitants in municipality i and in year t.

The relative risk is defined as

log(θit) = α+βXit + si +(γ+δi)× t, i = 1, ...,278, t = 1, ...,6

where α and βXit are fixed effects (α is the intercept, Xit are the covariates and β are the covariates
coefficients); si are the spatial effects; (γ+δi)× t are the temporal effects (γ is the global linear trend
average and δi are the spatio-temporal interaction random effects).

Since this is a preliminary study of crime trends, the covariates included in the model are not in-
tended to establish a possible association between risk factors and crime trends. In this preliminary study
only three covariates were included regarding economic aspects: purchasing power (xit1), beneficiaries
of social integration income of social security per 1000 inhabitants in active age (xit2) and dynamism
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relative factor of purchasing power (xit3). In a future work we intend to include covariates related to
social aspects in order to establish possible associations between risk factors and crime trends.

The specification of priors for the parameters were: α,β1,β2,β3 ∼ Normal(0,1000), si ∼CAR(σ2
s ),

γ∼ Normal(0,1000), δi ∼CAR(σ2
δ), for σ2

s and σ2
δ penalised complexity priors were used [7]. Model fit

and model selection was evaluated using Deviance Information Criterion (DIC) and Watanabe-Akaike
information criterion (WAIC).

4 Results

The results in Table 1 and Figure 2 show a decreasing temporal trend of crime from 2011 to 2016 in all
types of crime studied in this work (γ < 0), indicating that crimes against persons and crimes against pat-
rimony have had a decreasing trend from 2011 to 2016. In the selected model, the variation due to spatial
correlation (σ2

s ) is greater than the variation due to spatio-temporal interaction (σ2
δ). This implies that

the largest influence on the mean trend is spatial structured although there is an area specific differential
trend across the study region. Moreover, the covariate "dynamism relative factor of purchasing power"
was not included in the selected model for crimes against persons, since it was not significant.

Mean St.Dev. 2.5%CI 97.5%CI
Fixed effects:

α −0.3526 0.0524 −0.4554 −0.2497
β1 0.3404 0.0591 0.2241 0.456
β2 2.8308 0.4255 1.9953 3.6655
γ −0.0186 0.0020 −0.0225 −0.014

Random effects variance:
σ2

s 0.1373 0.0137 0.1127 0.1661
σ2

δ 0.0021 0.0003 0.0016 0.0028

Mean St.Dev. 2.5%CI 97.5%CI
Fixed effects:

α −0.3995 0.0413 −0.4806 −0.3184
β1 0.3738 0.0459 0.2836 0.4639
β2 0.9964 0.3362 0.3359 1.6556
β3 0.0306 0.0079 0.0152 0.0461
γ −0.0681 0.0016 −0.0712 −0.0650

Random effects variance:
σ2

s 0.2376 0.0219 0.197 0.2835
σ2

δ 0.0053 0.0006 0.0043 0.0066

Table 1: Posterior summaries of the parameters: Crimes against persons (left) and Crimes against patri-
mony (right).

Figure 1: Left (the first two maps): Posterior relative risk estimates of the number of Crimes against
persons: 2011 and 2016. Right (the last two maps): Posterior relative risk estimates of the number of
Crimes against patrimony: 2011 and 2016.

Hot spots are defined as areas that have high probabilities of Posterior relative risk being greater than
one. The results for both types of crimes and for year 2016 are showned in Figure 2. Thus regarding
Crimes against persons, the northeast and the south of Portugal can be considered as a hot spot and, in
the case of Crimes against patrimony, the south of Portugal can be consider as a hot spot.
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Figure 2: Probabilities of Posterior relative risk of 2016 being greater than one: Crimes against persons
(left) and Crimes against patrimony (right).
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